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Abstract

The integration of Artificial Intelligence (Al) and Machine Learning (ML) presents a paradigm shift for enhancing sustainability
within the textile industry. This review examines the transformative potential of these technologies in fostering a circular
economy, with a focus on material design, process optimisation, and end-of-life solutions. It surveys applications across textile
science, from natural fibre composites to technical and smart textiles, highlighting the role of predictive modelling and ML
algorithms—including neural networks, convolutional neural networks (CNNs), and random forests. These techniques are
demonstrated to enhance the design of fibre-based materials, predict key properties such as tensile strength and thermal stability,
and optimise manufacturing processes like dyeing and weaving. Furthermore, the review explores the significant contribution of
computer vision to automated quality control, defect detection, and the assessment of garment condition for resale, thereby
supporting circular business models. A central theme is the capacity of Al to drive sustainability by enabling zero-waste pattern
design, improving colour prediction accuracy to reduce chemical waste, and advancing automated textile sorting for recycling.
Despite this promising progress, the principal challenges identified are not algorithmic but systemic, relating to data scarcity,
integration complexities, and the need for cross-sector collaboration. The review concludes by identifying critical future research
directions, emphasising the need for robust, physics-informed models, the collaborative development of larger, more diverse
datasets, and Al-driven Design for Disassembly (DfD) to fully realise Al's potential in creating a more innovative, efficient, and
sustainable textile industry.

Keywords: Artificial Intelligence; Circular Economy; Textile Recycling; Predictive Modelling; Computer Vision; Sustainable
Manufacturing

1. INTRODUCTION

Positioning sustainability at the core of its development, the global textile industry—valued at approximately $1.97 trillion in
2024 and projected to reach $4.01 trillion by 2034—faces the urgent challenge of reconciling formidable growth with pressing
environmental imperatives [1]. This expansion, driven by rising demand for fast and customised products, is underpinned by a
predominantly linear model of consumption, which generates an estimated 92 million tonnes of waste annually [2]. This waste
stream, largely managed through incineration, landfilling, or export, represents a profound environmental burden and a significant
economic loss, estimated at USD 500 billion each year due to underutilised garments and inadequate recycling [3]. The scale of
the challenge is further highlighted by the stark disparity in 2024 between the 12% of discarded textiles that are reused and the
less than 1% of material from used clothing that is recycled into new fibres [4]. It is within this context of systemic inefficiency
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and environmental impact that artificial intelligence (AI) emerges as a potentially transformative force, offering novel pathways
to redefine production and consumption paradigms and advance the principles of a circular economy [5].

Figure 1 summarises how artificial intelligence and machine learning underpin a transition to circularity in the textile sector. At
the apex, a boxed node lists principal AI methodologies such as neural networks, convolutional neural networks, random forests
and computer vision. Arrows descend to three primary application domains: predictive material and product design,
manufacturing process optimisation and automated quality control. Each domain is annotated with representative activities —
for example, natural-fibre composites and smart fabrics under design; dyeing, spinning and weaving under process optimisation;
and defect detection and garment condition assessment under quality control. These applications converge on a central
circular-economy node, illustrated with the recycling motif, which connects to specific closed-loop outcomes including zero-
waste pattern cutting, colour-accurate dyeing to reduce rework, textile sorting for recycling and closed-loop recycling. The visual
hierarchy emphasises a flow from data-driven methods to tangible sustainability outcomes, while also implying feedback loops
for continuous improvement. The diagram is well suited for a review article, clarifying how Al interventions can reduce waste
and extend product life within an integrated circular framework.
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Fig. 1 Transforming Textile Sustainability through Artificial Intelligence: schematic linking AI/ML techniques to design,
process optimisation, automated quality control and circular-economy outcomes.

The concept of a circular economy in textiles aims to minimise waste through reuse, repair, refurbishment, and recycling of
materials and products, creating closed-loop systems that extend product lifecycles and reduce environmental impact [6].
However, transitioning to such a model presents complex challenges, including efficient sorting of textile waste, accurate
assessment of garment condition, and optimisation of manufacturing processes to reduce waste. Al technologies, particularly
machine learning, deep learning, and computer vision, offer promising solutions to these challenges by enabling automated, data-
driven decision-making offering speed, accuracy, and scalability across the textile value chain [7].
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This review paper examines the integration of Al and ML technologies in the textile industry through a circular economy
perspective, focusing on their potential to enhance sustainability across multiple domains. The analysis spans Al applications in
material design and development, manufacturing process optimisation, quality control, textile property prediction, and end-of-
life management. Special attention is given to the role of Al in advancing smart textiles and technical textiles containing flexible
electronics, while addressing the sustainability challenges associated with these innovative materials. Additionally, the paper
explores how predictive modelling and computer vision can facilitate textile recycling and reuse, thereby supporting the transition
to a circular economy.

Despite these promising applications, the widespread implementation of Al in the textile industry faces significant challenges.
These include data scarcity, issues of model interpretability and transparency, computational demands, and difficulties in model
generalisation [7,8]. This review provides a critical examination of these limitations and identifies pivotal future research
directions required to harness Al's full potential. By synthesising recent advances and highlighting innovative applications, this
paper offers a comprehensive overview of the role of Al in transforming textile sustainability through a circular economy lens.

The paper is structured as follows: Section 3 (Results) presents the systematic review findings, organised across three primary
domains—ALl in Textile Design and Materials Development, Al in Sustainable Manufacturing and Process Optimisation, and Al
for Circular Economy and End-of-Life Solutions. Section 4 (Discussion) provides a critical analysis of the prevailing challenges
and limitations before delineating specific future research pathways. The review concludes with Section 5, which summarises
the transformative potential of Al for the sector.

2 METHODS

This systematic review followed the PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
to ensure a comprehensive and transparent methodology for identifying, selecting, and critically evaluating relevant research on
Al applications in textile sustainability. The review process encompassed clear objectives, specific eligibility criteria, systematic
search strategies, and a structured data extraction process to minimise bias and ensure methodological rigor [9].

2.1 SEARCH STRATEGY AND INFORMATION SOURCES

A comprehensive literature search was conducted to identify relevant peer-reviewed journal articles, conference proceedings,
and technical reports published between 2016 and 2024. This eight-year timeframe was selected to capture the most significant
and recent advancements in the rapidly evolving field of artificial intelligence. The search was executed across several major
academic databases, including ScienceDirect, IEEE Xplore, Springer Link, Taylor & Francis Online, and SAGE Journals, with
Google Scholar utilised for supplementary discovery.

The search strategy employed a structured combination of keywords and Boolean operators, built around three core conceptual
domains:

i Artificial Intelligence Techniques: encompassing terms such as "artificial intelligence," "machine learning," "deep
learning," and "computer vision."
ii. Textile and Fashion Context: including "textile," "fabric," "fashion," and "garment."
iii. Sustainability and Circular Economy: focusing on '"circular economy," "sustainability," "recycling," "waste

management," and "sustainable manufacturing.”
2.2 ELIGIBILITY CRITERIA AND STUDY SELECTION

The study selection process employed explicit eligibility criteria to ensure the review's relevance and rigour. The inclusion criteria
required that studies:

e  Primarily investigated AI/ML applications within the textile value chain, encompassing design, manufacturing, quality
control, sorting, or recycling.
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e Presented empirical findings or detailed technical implementations, excluding purely conceptual frameworks.
e  Explicitly addressed environmental sustainability objectives, such as waste reduction, resource efficiency, or circular
economy principles.

Were published in English between 2016 and 2024 and were available in full text.
Conversely, studies were excluded based on the following criteria:

e A sole focus on consumer-facing applications (e.g., e-commerce recommendation systems) without direct
environmental sustainability implications.

o Insufficient technical detail or methodological description to evaluate the Al application.

e Duplicate publications or non-peer-reviewed articles, with the exception of technical reports from established research
institutions.

The initial search identified 135 potentially relevant research resources. After removing duplicates and applying eligibility
criteria through abstract and title screening, 86 records underwent full-text assessment. Ultimately, 49 studies met all inclusion
criteria and formed the core evidence base for this systematic review. The selection process was conducted independently by two
researchers, with disagreements resolved through discussion or consultation with a third researcher when necessary.

2.3 DATA EXTRACTION AND ANALYSIS

A standardised data extraction form was developed to systematically capture key information from each included study. Extracted
data included: (1) bibliographic information; (2) research objectives and methodology; (3) AI/ML techniques and algorithms
employed; (4) textile applications and processes addressed; (5) sustainability benefits and outcomes; (6) datasets used and their
characteristics; and (7) key findings and limitations. The extracted data were analysed using thematic analysis to identify patterns,
applications, and challenges across the studies. Results were synthesised narratively and organised according to key thematic
areas aligned with the textile value chain and circular economy strategies.

3 RESULTS
3.1 AT IN TEXTILE DESIGN AND MATERIALS DEVELOPMENT

The integration of Artificial Intelligence into textile design and materials development represents a paradigm shift in how fabrics
are conceived, engineered, and optimised for specific applications [10]. Al technologies are enabling unprecedented
advancements in predictive modelling of material properties, development of smart textiles, and creation of sustainable material
systems that align with circular economy principles [7,10—13]. These innovations span the entire spectrum of textile design, from
molecular-level material engineering to functional fabric development [6,11,12].

3.1.1 PREDICTIVE MODELLING FOR MATERIAL PROPERTIES AND SMART TEXTILES

Machine Learning (ML) algorithms have demonstrated considerable efficacy in predicting the properties of polymer textiles and
fibre composites, offering a pathway to accelerate materials design and reduce reliance on costly experimental procedures [14—
16]. Techniques such as artificial neural networks (ANNs), Gaussian process regression (GPR), and random forests have been
successfully employed to forecast key mechanical, thermal, and functional properties from material composition and processing
parameters [14,15].

For instance, Le et al. [17] developed a GPR model that accurately predicts the tensile strength of polymer/CNT nanocomposites.
The model demonstrated high performance, with testing RMSE and MAE values of 5.327 MPa and 3.539 MPa, respectively,
representing a high degree of accuracy given the broad tensile strength range of the dataset (0.55-190 MPa). This was
corroborated by excellent correlation metrics, including an R value of 0.993 and an index of agreement (IA) of 0.996 on the test
set. The study further established the superiority of GPR over six other ML methods based on RMSE. A notable discrepancy
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was observed in the mean absolute percentage error (MAPE) value of 33.394%, which is mathematically inflated by the wide
data range and the presence of values close to zero, and thus does not contradict the strong performance indicated by the other
metrics [17]. This capability to model complex property relationships underscores the transformative potential of ML in guiding
the development of advanced, sustainable textile materials.

Further demonstrating this potential, lannacchero et al. [29] employed an ML-driven approach to optimise the design of
conductive e-textiles. The study utilised Tencel yarn coated with polypyrrole (PPy), an intrinsically conductive polymer valued
for its electrical properties and environmental stability [29—32]. To overcome PPy's inherent brittleness, the researchers applied
Bayesian optimization and Pareto front analysis across 11 experimental trials. This process successfully identified ideal reaction
conditions that minimised electrical resistance to 0.067 kQ (22.3 Q cm™) while simultaneously enhancing conductivity and cost-
efficiency. The resulting optimised yarns were woven into prototype fabrics, confirming their viability for use in flexible
wearable systems and heating applications [29]. The environmental robustness of such PPy-based textiles is supported by their
demonstrated stability through simulated washing cycles and exposure to artificial sweat [29, 33].

The transition of Al-enabled smart textiles from research to commercial application is now evident. Companies are leveraging
Al across the product lifecycle, from material design to data analytics. For example, Myant's SKIIN platform integrates biometric
monitoring directly into garments for health and wellness applications [34]. In a collaborative effort, Garmin and Chronolife
have integrated Al-powered smart textiles with embedded sensors into washable garments to facilitate remote patient monitoring
[35]. Other innovators, such as Sensoria, focus on niche applications like Al-powered sensorised socks for performance
monitoring and injury prevention [36]. A critical function of Al in this sector is the analysis of vast biometric datasets to generate
health insights, alongside the optimisation of fabric properties for comfort and functionality. The growing market for these
intelligent garments across medical, fitness, and occupational sectors highlights a significant shift towards data-driven, functional
apparel, with Al serving as a core enabler of this innovation.

3.1.2 SMART TEXTILES AND FUNCTIONAL MATERIALS

The integration of Artificial Intelligence (Al), particularly machine learning (ML) and deep learning (DL), is catalysing the
development of next-generation smart textiles. These intelligent, responsive fabrics are finding applications in remote health
monitoring, performance sport, and adaptive clothing, functioning as continuous, self-powered platforms that acquire, process,
and interpret physiological and environmental data in real time [11-14,22-28]. A significant impediment to their wider adoption,
however, is the scarcity of sustainable alternatives to conventional metallic conductors [12,14]. The resource-intensive nature of
material testing for these digitally enhanced fabrics (encompassing both smart textiles and e-textiles) presents a further barrier.
ML-assisted approaches directly address these challenges by employing techniques such as Bayesian optimization and Artificial
Neural Networks (ANNs) to efficiently navigate complex parameter spaces, thereby optimising material compositions and
manufacturing settings to enhance performance and cost-effectiveness while drastically reducing experimental iterations [14].

A representative study by Iannacchero et al. [29] demonstrates this methodology, using ML to design conductive e-textiles based
on Tencel yarn coated with polypyrrole (PPy). While PPy is prized for its electrical properties and environmental stability [29—
32], its inherent brittleness often limits standalone use in flexible applications. To overcome this, the authors utilised Bayesian
optimization and Pareto front analysis, which identified optimal reaction conditions within just 11 experimental trials. This
process minimised the electrical resistance of the yarn to 0.067 kQ (22.3 Q cm™) while simultaneously improving conductivity
and cost-efficiency. The resulting yarns were successfully woven into prototype fabrics, validating their potential for flexible
wearable systems and heating applications [29]. The suitability of such PPy-based textiles for durable goods is underscored by
their demonstrated chemical stability, including resistance to simulated washing cycles and exposure to artificial sweat [29, 33].

The translation of Al-enabled smart textiles from research to commercial reality is now underway. Beyond optimising material
properties, Al is critical for deriving insights from the vast datasets these garments collect. For instance, companies like Myant
leverage Al in their SKIIN platform for continuous biometric monitoring in health and wellness garments [34]. Similarly,
collaborations such as that between Garmin and Chronolife integrate Al-powered smart textiles with wearable devices to advance
remote patient monitoring [35]. Other innovators, including Sensoria, focus on niche applications like Al-powered sensorised
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socks for performance analytics and injury prevention [36]. This evolving market segment, spanning medical, fitness, and
occupational wear, highlights a decisive shift towards data-driven, functional apparel where Al is integral to both the product's
functionality and its sustainable development.

3.1.3 FABRIC HANDFEEL OPTIMISATION

The subjective perception of fabric 'handfeel' represents a complex optimisation challenge that Artificial Intelligence is uniquely
positioned to address. Machine Learning (ML) and Deep Learning (DL) models are now capable of automating the prediction of
subjective tactile properties by correlating them with objective data from tactile sensors, visual inputs, and mechanical testing
[10, 37, 38]. This capability offers a substantial sustainability advantage; by enabling accurate digital prototyping, it significantly
reduces the reliance on physical sample production and the associated consumption of energy and materials inherent in traditional
laboratory testing [38, 39].

A systematic review of these Al-driven techniques confirms their high predictive performance, consistently exceeding 80%
accuracy in forecasting key handfeel attributes such as softness, stiffness, and drape, even with datasets ranging from dozens to
several hundred fabric samples [10]. This performance is evidenced by strong results across both classification and regression
tasks. For instance, in classification:

e  Models achieved 92% accuracy for texture recognition (roughness/smoothness) [40].
e  Deep learning models like ResNet-50 reached up to 99.3% accuracy in classifying woven fabric types [41].

For regression-based prediction of continuous subjective properties, models demonstrated high correlation and low error rates:

e  Artificial Neural Networks (ANNs) showed 83.5% prediction accuracy for drapability and tactile softness [42].

e Models predicting fundamental mechanical properties—key inputs for handfeel—achieved accuracies of 90.2% [43].

e An Adaptive Neuro-Fuzzy Inference System (ANFIS) predicting tactile comfort scores yielded an exceptionally low
RMSE of 0.0122, significantly outperforming standard deviation benchmarks [44].

e  Furthermore, bending stiffness was predicted with error margins consistently below 10% [41]

These Al approaches represent a significant advancement over traditional objective measurement methods like the Kawabata
Evaluation System (KES) and Fabric Assurance by Simple Testing (FAST), which rely on physical measurements, they are
constrained by being time-consuming, costly, and resource-intensive, and fundamentally struggle to address nonlinear
relationships between various fabric properties. In contrast, Al models (like SEDDI Textura) excel in identifying these hidden
patterns and offer real-time optimisation, critical for meeting consumer demands and accelerating product development.
Furthermore, Al-driven handfeel prediction contributes to sustainability by reducing the need for physical samples and enabling
right-first-time production [10,38].

3.1.4 VIRTUAL TRY-ON

Virtual Try-On (VTO) technologies, encompassing 3D design and Augmented Reality (AR), are emerging as critical enablers of
sustainability within the textile industry by advancing circular economy objectives [45, 46]. These systems contribute to
sustainability across two primary domains. Upstream, VTO facilitates zero-waste design and digital prototyping, drastically
reducing the need for physical samples and thereby curtailing raw material consumption, waste, and costs associated with the
design cycle [45]. Downstream, by providing accurate visualisations of fit and style, VTO mitigates the environmental burden
of high online return rates, directly reducing landfill waste and the carbon emissions from reverse logistics [45, 47—49].

Empirical evidence substantiates these impacts. A study of the Lucky Chouette brand, analysing 11,029 transactions over 2.5
months, demonstrated that VTO implementation led to a 27% reduction in product returns and increased average sales per
customer [50]. Complementary research on Taobao, using Partial Least Squares Structural Equation Modeling (PLS-SEM) on
366 consumer responses, confirmed that advanced VTO features can stimulate purchasing while promoting sustainability by
reducing irrational stockpiling and subsequent waste [49]. Further validation comes from a mixed-methods study on 4D golf
apparel simulation, where 76.9% of participants found the dynamic interface effective for judging fit, highlighting its potential
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to minimise returns due to size uncertainty [48].

Commercial applications reinforce these findings. The Al-powered sizing platform YourFit (by 3DLOOK) enabled a 30%
reduction in returns for the brand 1822 Denim, directly curtailing waste from reverse logistics [51]. Similarly, TA3 SWIM
reported that 80% of customers purchased the Al-recommended size, with less than 10% of returns attributed to fit issues and a
dramatic reduction in 'bracketing' behaviour to under 2% [52]. Collectively, these outcomes underscore the significant role of

VTO and Al in enabling data-driven sizing, reducing overproduction, and extending garment lifecycles through improved first-
time fit accuracy.

Table 1 summarizes the key achievements, Al techniques, and real-world examples of Al applications across textile design and

materials development.

Table 1: AI Applications in Textile Design and Materials Development

Ap[:;cezztlon Al Techniques| Key Achievements Paper Study Cases / Real-World Example Ref.
Gaussian Predict tensile strength A GPR-based model predicts the tensile
Propert Process and aging behavior, strength of polymer/CNT nanocomposites. The [17.21]
Pre dIi)c tioyn Regression | achieved RMSE values as; Random Forest Regressor demonstrated the ’
(GPR), ANN, low as 5.327 MPa for | best performance (R? of 0.92) in predicting the
Random Forests nanocomposites natural aging times of glass/epoxy composites.
Bayesian optimization was used to design fully]
Bavesian Identified optimal textile-based conductive e-textile prototypes
Smart Textile | O tirzlization conditions to minimize using Tencel yarn coated with polypyrrole
Development Plzlre to Front’ electrical resistance to (PPy). Companies like Myant (SKIIN [29,34-36]
P Analvsis 0.067 kQ in conductive platform), Chronolife, and Sensoria
Y yarns continuously advancing in Al-powered smart
textile.
Predict softness, stiffness,)
ir:((i:erg&e V;g}; a(f;lllleraig, 92% classification accuracy for texture
Fabric Handfeel CNN, Hybrid g o0, " recognition (roughness / smoothness) and
N approach supports "right- o . e . [10]
Optimization Models . . 99.3% accuracy in classifying woven fabric
first-time" production by tvpes in studies
reducing the need for yp ’
physical samples.
3136\;;“;11211 Enables “zero-waste” Some papers reported significant reduction in
Au mgnt’e d design by minimizing | product return rate (27%), irrational stockpiling
Virtual Try-On Realgl’ ty (AR) physical samples; and waste; 30% reduction in product returns fo1 [45-52]
. mitigates the substantia enim s Yourkit platfor;
VTO AI-dyrlven ’ itig he sub ial | 1822 Denim by 3DLOOK's YourFit platf
mobile bod environmental burden of | 80% of customers purchasing the correct size ir|
scanning Y high online return rates. TA3 SWIM.

3.2 AT IN SUSTAINABLE TEXTILE MANUFACTURING AND PROCESS OPTIMISATION

The implementation of Artificial Intelligence in textile manufacturing processes has ushered in unprecedented efficiencies,
substantial waste reduction, and enhanced sustainability across production stages. From spinning and weaving to dyeing and
finishing, Al-driven solutions optimise resource consumption, improve product quality, and minimise environmental impact, key
objectives in the transition to a circular economy. These technological advancements enable data-driven decision-making that
aligns economic objectives with ecological responsibility.
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3.2.1 PROCESS OPTIMISATION AND PREDICTIVE MAINTENANCE

Al and ML algorithms have demonstrated remarkable effectiveness in optimising complex textile manufacturing parameters and
predicting maintenance needs, leading to significant reductions in downtime, often cited between 20—45% [53]. In spinning and
weaving processes, Al analyses real-time sensor data on machine vibrations, speed, and tension to make instantancous
adjustments that ensure consistent quality while predicting maintenance requirements [54,55]. This predictive modelling
capability was exemplified in research conducted with a Portuguese textile company, where Automated Machine Learning
(AutoML) tools were employed to predict yarn breaks during fabric production. The H20 AutoML model achieved an R? of 0.73
for predicting weft breaks, enabling proactive measures such as adjusting loom speed, providing special operator attention, or
modifying yarn materials to prevent production stoppages [56]. Supporting the tangible benefits of this approach, similar
applications of Al-driven predictive maintenance in textile manufacturing have led to quantifiable outcomes, including 40%
reduction in unplanned downtime within six months of implementing smart sensor monitoring in a mid-sized manufacturer [57],
19% improvement in overall reliability, leading to a reduction in unplanned downtime in Jaya Shree Textiles (India) [58], 32%
reduction in unplanned downtime and an 18% decrease in maintenance costs over a 90-day trial period in a manufacturer that
partnered with Mutually Human to adopt Microsoft Fabric platform [59].

The optimisation capabilities extend to dyeing processes, where Al significantly reduces water, energy, and chemical
consumption. Al-driven technologies can drastically reduce the amount of water and chemicals required, with capabilities
extending to cutting water usage by up to 95% and leading to energy savings of up to 50% [60]. Ant colony optimisation (ACO)
algorithms have been successfully applied to predict optimal dye recipes for achieving uniform colour across cotton and
bicomponent polyester filament blends. These algorithms minimise colour deviation between reactive dyeing of cotton and
disperse dyeing of polyester, ensuring both components achieve the same shade with minimal differences [14,61]. This precise
colour matching reduces the need for re-dyeing, as the effective algorithm allows for finding the right combination of reactive
dyes without having to make multiple corrections. This capability offers the possibility to remedy wastage during the use of dyes
and to reduce the quantity of water used during colour corrections, which traditionally consumes additional resources and
generates wastewater [60,61].

3.2.2 AI-ENHANCED QUALITY CONTROL

Computer vision systems powered by advanced Al have revolutionised quality control in textile manufacturing, enabling
automated, real-time defect detection with superhuman accuracy. These systems utilise high-resolution cameras and
sophisticated Al-based machine vision algorithms [62,63]. Such automated optical inspection systems achieve detection
accuracies ranging from over 90% up to 99% [64,65], with specific enhanced models reaching a 97.49% mAP [62], dramatically
surpassing the manual human accuracy rate of 60—75% [63,66]. For instance, WiseEye can detect, classify, and grade over 50
common types of defects (or around 40 common fabric defects), including flaws like holes, foreign yarn, slubs (thread errors),
dirty marks, dye patches, and oil patches, as well as subtle anomalies such as folds and arc edges, across common types of woven,
knitted and nonwoven textile materials with different colors and patterns [64,66,67]. These systems enable inspection across
diverse materials and patterns at speeds up to 60 metres/minute, significantly exceeding the human speed of 12—15 metres/minute,
while some models can process frames in real-time, achieving high speeds like 102.1 FPS [66,68]. Crucially, these systems
incorporate industry-specific optimization, acknowledging that an undetected defect (False Negative - FN) usually has a higher
cost to the company, leading to the implementation of FN reduction methods and optimization for key metrics like Precision and
Recall [68,69]; resulting performance confirms this focus, with certain enhanced models achieving a Recall of 98.45% and
Precision of 91.55% [62], and an improved YOLOv8n model delivering 96.3% Precision and 92.8% Recall [67]. This
competitive market features major providers offering commercial systems, such as ISRA Vision GmbH with its Smash inline
inspection system and Cloud Xperience solution employing Al-supported classification and segmentation [70], and partnerships
demonstrating real-world deployment, like the textile manufacturer utilizing an Advantech Automated Optical Inspection (AOI)
system to achieve 99% detection accuracy using the WISE-PaaS Cloud Platform [65].

The integration of Al with machine vision enables adaptive learning, allowing self-learning Al systems to improve inspection
accuracy over time by recognising new defect and adapting to varying production conditions, ensuring long-term reliability [71—
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73]. This capability has demonstrated measurable impact in industrial applications, with implementations like Robro Systems'
Kiara Web Inspection System (KWIS) achieving exceptional accuracy, such as detecting up to 99.2% of all defects [73,74].
While some machine vision systems generally report an improvement in defect detection accuracy by up to 30% compared to
manual inspection methods [75], KWIS deployments have shown even stronger industrial results, including a 40% reduction in
rejection rates and a 15% increase in production speed [74]. Such advancements directly contribute to sustainability by
identifying defects early in the production process, reducing material waste (with Al-driven systems capable of reducing fabric
waste by approximately 20% in large-scale facilities [71]) and preventing resource-intensive rework operations [72,73,75].

3.2.3 SUSTAINABLE PRODUCTION PLANNING

Al-driven predictive analytics, leveraging Machine Learning algorithms such as Long Short-Term Memory (LSTM) and
Reinforcement Learning (RL), enable more sustainable production planning through demand forecasting and resource
optimization [76,77]. Natural Language Processing (NLP) algorithms analyse customer reviews, social media trends, and market
reports to assess consumer attitudes regarding particular styles, colours, materials, and brands in real time [78]. Predicting
demand patterns this way helps manufacturers avoid overproduction and inventory waste, leading to a reduction in forecasting
errors by up to 25% [77]. This data-driven approach to production planning aligns with circular economy principles by ensuring
that production volumes more closely match consumption needs, reducing the volume of unsold goods that typically end up as
waste [S]. Several brands utilize these Al techniques. Zara employs Al-powered social listening and Consumer Sentiment
Analysis (analysing text, images, and videos) to detect emerging trends, enabling them to issue production orders in precise
batches, which has contributed to 85% of items selling at full price (versus a 60% industry average) and has reduced unsold
finished goods by nearly 20 percent across pilot categories [79,80]. Similarly, subscription service Stitch Fix relies on Natural
Language Processing (NLP) to analyse more than 4.5 billion text data points shared by customers, resulting in 70% of re-buys
being driven by Al recommendations, lifting engagement and conversions by 5% to 12% respectively, and achieving a 9-10%
growth in average order value [80-82]. Furthermore, a collaboration with Tommy Hilfiger leveraged NLP and social media
listening to analyse consumer sentiments and trends, helping the brand rapidly respond to emerging trends and reduce the time-
to-market for new collections [82,83], while The North Face uses NLP in its online shopping assistant to understand customer
needs, successfully contributing to increased online sales and fewer returns [83].

Furthermore, Al systems facilitate energy efficiency in textile manufacturing facilities through IoT-based sensors and Al-driven
monitoring that optimise energy consumption across production processes. These systems, often utilizing models like Adaptive
Deep Reinforcement Learning (ADRL-BO), identify energy-intensive operations and suggest operational adjustments to reduce
power consumption without compromising output quality [84]. The cumulative effect of these Al applications, from predictive
maintenance to quality control and production planning, contributes to a significant reduction in the environmental footprint of
textile manufacturing [85]. This technological integration not only achieves measurable resource savings (such as an average of
35% energy savings and 45% maintenance cost reduction) but also strengthens the economic competitiveness of manufacturers
[84,86].

3.3 AI FOR CIRCULAR ECONOMY AND END-OF-LIFE SOLUTIONS

Artificial Intelligence plays a transformative role in advancing circular economy principles within the textile industry,
particularly in extending product lifecycles, optimising recycling processes, and creating new pathways for waste valorisation
[5,87]. Al technologies enable innovative approaches to textile waste management, utilizing integrated pipelines built on Industry
4.0 principles, including automated sorting, precise material identification using spectral imaging, condition assessment, and
recycling process optimisation via robotics and laser segmentation (e.g., targeted component removal) [7,88,89], which are
critical for transitioning from a linear "take-make-dispose" model to a circular system that maximises resource efficiency and
establishes digital traceability aligned with global sustainability goals [5,87].
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3.3.1 AUTOMATED TEXTILE SORTING AND WASTE MANAGEMENT

The sorting of textile waste represents a significant bottleneck in advancing circularity, particularly with the growing complexity
of material compositions in modern textiles. Al-driven systems, especially those utilising computer vision and deep learning
algorithms, have demonstrated remarkable capabilities in automating and enhancing the accuracy of textile sorting operations.
Convolutional Neural Networks (CNNs) and hybrid models can classify textiles by type, physical condition, and recyclability,
addressing a critical challenge in textile waste management. These systems can identify material composition, colour patterns,
and structural properties at speeds and levels unattainable through manual sorting [89,90]. The application of ML in textile waste
sorting has achieved impressive results, with classification accuracy of up to 100% for pure fibres, significantly improving the
efficiency of recycling operations. However, the sources confirm these peak results were attained under highly controlled, lab-
based conditions using samples with assured composition from commercial catalogues. The main limitation for real-world
application remains the need for a sufficiently large database with samples of known composition for supervised training,
especially since factors prevalent in a 'noisy, real-world recycling facility', such as blended fabrics, coatings, aging effects, and
moisture, introduce spectral variability that significantly reduces classification reliability [90]. On the industrial side, the Berlin-
based innovator Circular.fashion is a partner in the FashionSort.Al project, developing an innovative digital sorting solution that
uses image recognition and Al to efficiently assign discarded textiles for re-use or recycling [91]. This high-precision sorting is
essential for maintaining the quality of recycled materials, as contamination from different fibre types can compromise the
properties of recycled textiles. Furthermore, Al-powered sorting enables the identification of garments suitable for reuse versus
those destined for recycling, maximising the economic value and environmental benefits of textile waste streams [89,90].

3.3.2 CONDITION ASSESSMENT FOR SECOND-LIFE MARKETS

Al technologies have revolutionised the assessment of garment condition, enabling accurate evaluation of wearability and quality
for second-hand markets. Computer vision systems can detect subtle signs of aging and damage, such as colour fading, pilling,
surface abrasion, and seam damage, which determine whether garments are suitable for resale, repair, or recycling. This
automated assessment capability is particularly valuable for charitable organizations and second-hand retailers that traditionally
rely on volunteer labour or manual sorting, which is subjective and time-consuming [7].

The integration of Al in condition assessment supports the second-hand clothing market by providing consistent, objective
evaluations that enhance consumer trust and enable accurate pricing [7]. This burgeoning ecosystem is demonstrated by key
industry players leveraging Al and digital infrastructure: the luxury resale platform Vestiaire Collective utilizes Al in customer-
facing applications, having integrated an Al search engine that converts keyword searches into image pattern recognition for
more precise results, alongside plans for Al-powered price recommendations [92]. Furthermore, companies like the traceability
leader TrusTrace have launched Al-driven upgrades to their platforms and are recognized as Representative Providers for Digital
Product Passports (DPPs), helping manage complex traceability data necessary for long-term circularity [93]. By extending the
lifespan of garments through facilitated reuse, Al directly contributes to waste reduction and resource conservation. Research
indicates that each garment kept in use for longer periods through second-life markets significantly reduces its environmental
footprint across metrics including water consumption, carbon emissions, and waste generation [7,94].

3.3.3 RECYCLING PROCESS OPTIMISATION AND DESIGN FOR DISASSEMBLY

Al plays a crucial role in optimising recycling processes for complex textile products, particularly those incorporating smart
textiles with integrated electronics. The convergence of textiles and electronics has created sustainability challenges, as these
hybrid materials are difficult to disassemble and recycle using conventional methods. Al-assisted approaches address these
challenges by leveraging advanced identification systems, enabling efficient automated dismantling, drawing on methodologies
developed for comparable complex hybrid products like e-waste, and pioneering novel recycling techniques [95-97].

Al models and robotics can optimise the disassembly and separation of conductive materials from textile substrates, facilitating
the recovery of precious metals and specialised polymers [95]. Additionally, generative Al systems use multi-objective
optimization frameworks to suggest design modifications that enhance recyclability, such as minimizing textile waste or
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facilitating easier disassembly via modular architectures and detachable systems,an approach known as design for disassembly
(DfD) [95,98].

The potential of Al to drive circularity extends to new business models that prioritise service and performance over ownership.
Al-enabled platforms and digital infrastructure (like Digital Product Passports) can facilitate clothing rental, repair services, and
remanufacturing by accurately assessing condition, predicting remaining lifespan, and identifying optimal maintenance
requirements. These innovative approaches, powered by Al represent a fundamental shift toward dematerialisation and extended
product responsibility that aligns with circular economy principles [99].

3.4 AI-ENABLED TEXTILE RECYCLING TECHNOLOGIES

Recent advancements in Al-enabled recycling technologies have demonstrated significant potential for addressing the global
textile waste crisis [7]. These technologies leverage computer vision, robotics, and machine learning to automate the dismantling
and processing of used garments, transforming them into high-quality recycling feedstock [100,101]. The development of these
systems represents a critical innovation for scaling circular economy solutions in the fashion and textile industry.

3.4.1 AUTOMATED GARMENT DISMANTLING SYSTEMS

Fully automated systems for garment identification, sorting, and disassembly have emerged as promising solutions for addressing
the labour-intensive nature of textile recycling, where inaccurate manual sorting often leads to material inefficiency and
contamination [89]. Researchers at RIT's Golisano Institute for Sustainability (GIS) have developed an automated system that
processes used clothing for high-quality textile recycling using Al and laser technology. The goal of this system is to transform
post-consumer clothing into high-quality, reliable feedstock, addressing the fact that recyclers currently suffer substantial
production yield losses ($7.5B) due to bad feedstock [100]. The system begins with a conveyor-fed imaging station where three
specialised cameras generate a high-resolution, multi-dimensional map of the garment, enabling fibre composition analysis down
to the millimetre level [100].

The system leverages artificial intelligence and machine vision to identify and remove non-recyclable elements from clothing,
including zippers, logos, and mixed materials. This capability addresses a significant challenge in textile recycling, as these
components often contaminate recycling streams and reduce the quality of recycled materials [96]. The Al algorithms interpret
infrared reflections to define fibre type and identify features like collars and cuffs, then pass this data to a robotic laser-cutting
system that removes non-recyclable elements with precision without damaging reusable material. Once processed, the cleaned
materials are sorted into separate bins for recycling, creating high-quality feedstock that can be reintegrated into manufacturing
processes [100].

3.4.2 INTEGRATION WITH RECYCLING INFRASTRUCTURE

The effectiveness of Al-enabled textile recycling depends on seamless integration with existing and emerging recycling
infrastructure. The RIT system demonstrates this integration through collaborations with industry partners including Nike,
Goodwill, and Ambercycle, a company pioneering polyester recycling. This collaborative approach ensures that the technology
addresses real-world challenges and can be scaled effectively across different recycling contexts [100].

Operating at approximately one garment every 10 seconds, this automated approach offers significant improvements over
conventional sorting, which is labor-intensive and suffers from inefficiency and human error [89]. Although this technology was
built considering its scalability to be both economical and replicable, scaling these advanced technologies in general, which
utilize Al, multiple cameras, and a robotic laser-cutting system, requires a high initial investment cost [95,100]. Therefore, despite
the benefit that these technologies offer, long-term economic viability and cost-benefit analysis must carefully weigh the high
investment in sophisticated technology. A detailed synthesis of Al technologies, key achievements, sustainability benefits, and
real-world examples across textile manufacturing and circular economy solutions is provided in Table 2.
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Table 2: Al Applications in Sustainable Textile Manufacturing
Application . Sustainability Paper Study Cases /
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Maintenance unplanned downtime]  manufacturing . L .
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. manufacture.
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re-dyeing. reactive dyes.
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operations. to 99% detection accuracy
20% reduction in unsold
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LSTM, . Ensures production Al-powered social
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Processing (NLP] & ’ inventory waste. for new collections by
using NLP in Tommy
Hilfiger.
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Achieved accurate material
CNNs, Hybrid classification . 1den't1.ﬁcat10n; An innovative dlg{tal
Automated accuracy up to 100% critical for sorting solution using
. . Models, . . .. [89-91]
Textile Sorting . . | for pure fibres (underl maintaining the | image recognition and Al
Computer Vision . o .
controlled quality and value in Circular.fashion.
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. . such as colour fading] o [92-94]
Second-Life Vision, Al Aline. and surface | TEUSS enhances | traceability data necessary|
Markets P agl;rasion consumer trust; for Digital Product
' extends garment Passports (DPPs) in

© Author(s) 2025. This work is distributed under the Creative Commons BY- 4.0 license:
https://creativecommons.org/licenses/by/4.0/

56



Textile Science & Research Journal
ISSN: 3059-846X Volume — 1, Issue — 1, 2025
DOL: https://doi.org/10.63456/tsrj-1-1-22 TRESEARCH
lifespan through TrusTrace.
facilitated reuse.
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Recycling behaviour of efficient recovery . .
. . Suggesting design
Process . composite materials of valuable - . :
RO ML Algorithms, . . modifications (like
Optimisation / . during recycling components, . .
. Generative Al, . . . standardizing material [95-98]
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. Robotics . . . combinations) by multi-
Disassembly design modifications| metals; supports obiective optimization
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The prototype system Transforms post-
consumer clothing . .
can process a new . . . RIT's system using
into high-quality, L
garment reliable recvelin specialized cameras and
Automated Al, Machine | approximately every feeds togk' gl Alto map garments and
Garment Vision, Robotic| 10 seconds; identifies i guide a robotic laser- [89,100]
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Dismantling | Laser-Cutting and removes non- | . cutting system to remove
industry problem o
recyclable . . non-recyclable
components (zippers production yield contaminants
logos) with recision, losses (87.5B) due .
& P | to bad feedstock.
4 DISCUSSION

4.1 CHALLENGES AND LIMITATIONS

Despite the significant advancements and promising applications of Artificial Intelligence in transforming textile sustainability,
several challenges remain that must be addressed to fully realise Al's potential in advancing circular economy principles. This
section examines these limitations, proposes future research directions, and provides concluding remarks on the evolving
landscape of Al-driven sustainability in the textile industry.

4.1.1 TECHNICAL AND IMPLEMENTATION CHALLENGES

The widespread adoption of Al in the textile industry faces several significant technical and operational barriers. Data scarcity
represents a fundamental challenge, as many Al models require large, diverse, and high-quality datasets for effective training
and validation [7]. This scarcity is rooted in complex systemic challenges, including the reluctance of companies to share
proprietary or commercially sensitive information due to ownership or trust issues. Furthermore, textile industry players and
contributors have different data management capacities, which in many cases low digital maturity has made the data handling
and documentation processes throughout the textile value chain highly difficult. This prevents the harmonization and
standardization needed for efficient transfer across systems [102]. In addition, carefully labelling datasets is labour-intensive and
costly [103]. Current datasets for textile applications are often limited in size and scope, with most research focusing on fabric
swatches (20 studies) rather than whole garments (only 7 instances) [7]. This limitation affects model generalisability and real-
world performance across diverse textile types and complex scenarios.

Additionally, the black-box nature of many complex Al algorithms, particularly deep learning models, raises concerns about
interpretability and trust among industry stakeholders who require transparent decision-making processes [103]. The primary
response to this issue is the widespread adoption of Explainable Artificial Intelligence (XAI) techniques like LIME and SHAP.
These methods are designed to generate post hoc explanations to help users understand the output of black box models [104].
However, these generic XAl tools are often "inadequate to be directly used" in complex manufacturing environments. This
insufficiency arises because their underlying mechanisms, such as LIME's image perturbation, can "mislead the underlying
model" and yield "poor explanations" by introducing artifacts that models confuse with actual defects [105]. Furthermore,
SHAP's utility may be limited in "complex, interconnected systems" (such as dynamic production processes) due to its
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assumption of feature independence [104]. Therefore, where XAl methods are insufficient, the definitive approach suggested by
the sources is Causality Analysis or Causal Discovery, which provides a "transparent white-box model" where causal relations
are explicitly known. This technique offers a deeper understanding beyond mere feature importance by uncovering cause-and-
effect relationships, empowering domain experts to identify the root causes of variations, track changes in process dynamics
through interpretable causal graphs, and ultimately enable proactive intervention [104].

Implementation challenges include the high cost of Al integration, which is financially prohibitive for many organizations,
demanding substantial upfront investments and extensive resources, thereby limiting accessibility especially for small and
medium enterprises [103], and the compatibility issues between advanced Al systems and existing manufacturing infrastructure,
especially those textile sectors with very low digital maturity level [102]. Many fashion and luxury brands operate with costly
legacy systems that are rigid, not scalable, and have restricted data warehouses, which struggle to incorporate new data sources
[102]. Furthermore, the rapid evolution of Al technologies creates a skills gap in the textile workforce, as specialised expertise
is required to develop, implement, and maintain these systems effectively [102].

For smart textiles and textronics containing electronics, additional challenges emerge regarding end-of-life management and
recycling complexities. The integration of flexible electronics, conductive polymers, and sensors creates hybrid materials that
are difficult to disassemble and recycle using conventional methods. The presence of these electronic components, which often
contain hazardous materials such as heavy metals or toxic chemicals, along with the diversity of material combinations, poses
significant challenges for waste management and threatens to exacerbate the growing problem of e-waste if not properly
addressed through circular design principles. These principles must include modular design to ensure electronic components and
fabrics are easy to separate [96].

4.1.2 ECONOMIC AND SOCIAL CONSIDERATIONS

Beyond technical challenges, the integration of Al in textile sustainability raises important economic and social considerations.
The economic viability of Al solutions remains a concern, particularly for small and medium enterprises (SMEs) that may lack
the capital for significant technological investments. While Al offers long-term cost savings through efficiency improvements
and waste reduction, the initial investment required for Al infrastructure, training, and development can be prohibitive for smaller
players in the industry [103,106]. This economic barrier, could potentially risk concentrating advanced Al technology adoption
within larger enterprises, thereby widening the gap between large enterprises and SMEs within the innovation ecosystem and
leading to MSME marginalization [107]. To address this structural and financial disparity, specific solutions are necessary to
democratize access: Technologically, the high cost of implementation can be mitigated through the adoption of cloud computing
and the strategic adoption of affordable Al-as-a-Service (AlaaS) models without initial equipment investment [108]. Structurally
and through policy, governments must provide targeted financial incentives such as tax breaks or grants to encourage Al
adoption, especially for SMEs [107,109]. Furthermore, establishing regional innovation hubs and public-private partnerships can
reduce geographic disparities in adoption by centralizing funding, technology, and expertise [107]; a notable example of such
efforts aimed at innovation in the textile sector is the Advanced Functional Fabrics of America (AFFOA).

Social implications include potential job displacement as automation reduces the need for manual labour in areas such as quality
inspection, sorting, and some aspects of manufacturing. The transition to Al-driven processes may marginalise workers with
traditional textile skills while creating demand for new technical expertise [107]. However, the net effect is complex because Al
is also likely to complement human work, requiring a shift to a new labour structure. This transformation fosters a high demand
for new technical expertise, specifically roles for AI/ML specialists and data analysts, and necessitates cognitive skills like
creative problem solving and collaboration in hybrid human-robot teams [110]. This structural change mandates investment in
workforce retraining and skills development to ensure a just transition toward more sustainable production models [108].
Additionally, there are concerns about the environmental footprint of Al technologies themselves, including the energy
consumption of data centres and computing resources required for training and operating complex models, underscoring the need
for energy-efficient algorithms and sustainable infrastructure [103].
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4.2 FUTURE RESEARCH DIRECTIONS

Several promising research directions emerge to address current limitations and advance the application of Al for textile
sustainability. There is a critical need for larger and more diverse datasets that encompass varied textile types, conditions, and
production scenarios. Collaborative efforts between industry and academia could facilitate the creation of standardised, open-
source datasets following FAIR (Findable, Accessible, Interoperable, Reusable) principles [111], to accelerate model
development and benchmarking.

The development of physics-informed neural networks represents a promising approach to enhancing model robustness while
reducing data requirements. By incorporating domain knowledge and physical principles into Al architectures, these models can
improve generalization to unseen conditions and provide more reliable predictions [112]. Additionally, research should focus on
explainable AI techniques that enhance model interpretability, building trust among manufacturers and consumers while
providing valuable insights into the relationships between material composition, processing parameters, and final properties.

Future efforts should also prioritise Al-driven design for circularity, developing systems that optimise not only for performance
and cost but also for recyclability, disassembly, and material health. This includes creating digital product passports that track
composition and facilitate sorting, as well as generative Al tools that suggest designs minimising waste and enabling easier
material recovery. Research into Al-assisted development of mono-material textiles with maintained functionality could
significantly enhance recyclability while meeting performance requirements. This potential is strongly supported by successful
Design for Recycling (DfR) applications in the plastics industry, where converting multi-material components into mono-
material solutions has been shown to enhance recyclability, maintain the required functionality, and result in substantial
environmental and economic reductions [113].

One significant future research direction lies in the development of a fully integrated multi-modal Al framework that bridges the
gap between end-of-life sorting and real-time life cycle assessment (LCA). While multi-modal Al models combining computer
vision, sensor data (e.g., hyperspectral imaging), and digital product passports (DPPs) are showing promise for robust sorting,
their impact can be amplified by coupling these insights with dynamic LCA. This integrated approach would allow an Al system
not only to make optimal sorting decisions based on material composition and origin, but also to provide real-time environmental
impact data that quantifies the sustainability benefits of specific recycling pathways. Such a system could automatically update
LCA models with real-time end-of-life processing data, moving beyond traditional, static assessments to create a dynamic
feedback loop that continuously informs and improves circular economy strategies for textiles. This combined effort would
accelerate data collection, enhance accuracy, and provide designers and manufacturers with actionable insights on the true
environmental costs and benefits of their choices.

4.3 POLICY AND IMPLEMENTATION FRAMEWORK

The successful integration of Al for textile sustainability requires supportive policy frameworks and implementation strategies,
which must be specifically structured around circular economy drivers such as Extended Producer Responsibility (EPR) schemes.
Governments and industry bodies can play a crucial role in facilitating this transition through targeted interventions such as
research funding, standards development, and incentive structures like eco-modulated fees that financially reward producers who
utilize Al to promote circularity, such as developing Al-optimized DfR. A cornerstone of this policy must be the mandatory
adoption of advanced labelling strategies, including Digital Product Identification or digital product passports, to ensure textile
traceability and provide comprehensive data. Policies that encourage data sharing to enable efficient downstream applications
while protecting intellectual property could accelerate the development of comprehensive datasets needed for robust AI models.

Implementation frameworks should address the specific needs of different stakeholders across the textile value chain.
Specifically, governments must advocate for public procurement policies that prioritize textiles verified by Al-driven
sustainability and circularity metrics. This approach creates a guaranteed market for early adopters of Al technologies, helping
to mitigate the high costs and uncertainties regarding Return on Investment (ROI) that often deter implementation, especially for
SMEs. This Green purchasing policy can require public agencies to procure environmentally preferable products. For
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manufacturers, guidelines for phased Al adoption that minimise disruption and maximise return on investment would facilitate
broader implementation. For recycling facilities and second-hand markets, standards for Al-based quality and condition
assessment could create more transparent and efficient markets for used textiles. Educational institutions have a role to play in

developing curricula that bridge textile science with data analytics and Al competencies, preparing the next generation of
professionals for the evolving industry landscape.

Table 3 synthesizes the major challenges, necessary future research directions, policy frameworks, and underlying context for
the sustainable integration of Al in the textile sector.

Table 3: Challenges and Future Directions for Al in Textile Sustainability

Challenge Specific Challenges Future Research Directions Tmp le‘mentz!tlon Ref.
Category Considerations
Development of PINNs to Collaborative
Data scarcity (limited enhance robustness and development of laree
Technical size/scope); Model | generalization; Combining XAI diversg o en—sour%e’
Limitations interpretability ("black- techniques with Causality Jatasets (%oli)owin FAIR [7,102,104]
box" nature of DL); | Analysis for transparent, white- rinciples): Mf del
Generalization. box models; Synthetic data P pies);
generation benchmarking standards.
C Development of modular Al
High initial .
System . . | systems and retrofit solutions for . .
. implementation costs; . Phased implementation
Integration & o older machinery; Increased ) o
. Compatibility issues . guides to minimise [102,103]
Implementation . . adoption of cloud-based : .
with legacy equipment . disruption.
(low digital maturity) platforms (Al-as-a-Service,
’ AlaaS).
Recycling complexity Al-driven DfD; Generative Al
Circular of smart textiles t00ls to su ’ est desions Mandatory adoption of
Economy (hybrid materials); S o gns DPPs for traceability;
c L. . minimizing waste and enhancing . e [96,113]
Applications Need for standardized 2. Recycling compatibility
. . recyclability; Development of .
material composition ) . labelling standards.
mono-material textiles.
data.
High initial investment Eczrﬁiiﬂﬁte(rle{ii;hat
Economic is prohibitive for Targeted financial incentives (tax roducers uZin Al for
Viability & SMEs; Risk of breaks, grants) for SME P circularity: I;gublic [107-109]
Access innovation being adoption; Establishing regional rocuremei/l’t olicies
concentrated in large | innovation hubs (e.g., AFFOA) procure POC
corporations prioritizing Al-verified
' sustainable textiles.
Investment in workforce
. . Research into Human-Al transition and skills
Social Potential workforce .
. L. . collaboration systems; development programs;
Implications displacement from . . [107,110]
. . Development of adaptive Development of curriculg
automation; Skills gap, . R ) .
learning platforms. bridging textile science
and data analytics.
Environmental
Environmental | footprint of Al (energy| Focus on energy-efficient Sustainable [103]
Implications consumption of data algorithms. infrastructure.
centres).
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S CONCLUSION

This review substantiates the considerable potential of Artificial Intelligence and Machine Learning to advance sustainability in
the textile industry through a circular economy lens. Al-driven approaches facilitate unprecedented efficiencies, waste reduction,
and resource conservation across the value chain, from predictive material design and manufacturing optimisation to waste
management and recycling. Key applications, including predictive modelling of material properties, computer vision for quality
control and defect detection, and automated sorting for textile waste, are pivotal in building closed-loop systems that maximise
resource value and minimise environmental impact. Innovations such as Al-driven Design for Disassembly (DfD) and robotic
garment dismantling further underscore this potential.

A central finding of this review, however, is that whilst core Al methodologies demonstrate significant algorithmic efficacy,
their realised impact on textile circularity is primarily constrained by systemic, non-algorithmic barriers. Realising Al's full
potential necessitates addressing persistent challenges related to data availability—often rooted in commercial reluctance to share
proprietary information and the low digital maturity of many textile operations. Moreover, high initial implementation costs and
compatibility issues with legacy systems present significant economic and technical hurdles, which risk marginalising small and
medium-sized enterprises (SMEs).

Consequently, future research should prioritise: (i) the development of more robust, physics-informed models to enhance
generalisation with limited data; (ii) the collaborative creation of comprehensive, standardised, and diverse datasets; and (iii)
enhancing the explainability and accessibility of Al tools to foster broader industry adoption. The successful transition of the
textile industry towards circularity will depend not only on these technological advancements but also on supportive policy
frameworks and the alignment of economic incentives with sustainability objectives.

As Al technologies mature, their deeper integration with textile science and engineering promises to unlock new frontiers for
sustainable innovation. Harnessing Al for circular economy applications offers a pathway towards a more regenerative and
efficient industrial model, balancing economic growth with environmental stewardship and social responsibility. This
transformation represents not merely a technological imperative but an essential commitment to achieving global sustainability
goals within an industry integral to modern society.
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