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Abstract  
The integration of Artificial Intelligence (AI) and Machine Learning (ML) presents a paradigm shift for enhancing sustainability 

within the textile industry. This review examines the transformative potential of these technologies in fostering a circular 

economy, with a focus on material design, process optimisation, and end-of-life solutions. It surveys applications across textile 

science, from natural fibre composites to technical and smart textiles, highlighting the role of predictive modelling and ML 

algorithms—including neural networks, convolutional neural networks (CNNs), and random forests. These techniques are 

demonstrated to enhance the design of fibre-based materials, predict key properties such as tensile strength and thermal stability, 

and optimise manufacturing processes like dyeing and weaving. Furthermore, the review explores the significant contribution of 

computer vision to automated quality control, defect detection, and the assessment of garment condition for resale, thereby 

supporting circular business models. A central theme is the capacity of AI to drive sustainability by enabling zero-waste pattern 

design, improving colour prediction accuracy to reduce chemical waste, and advancing automated textile sorting for recycling. 

Despite this promising progress, the principal challenges identified are not algorithmic but systemic, relating to data scarcity, 

integration complexities, and the need for cross-sector collaboration. The review concludes by identifying critical future research 

directions, emphasising the need for robust, physics-informed models, the collaborative development of larger, more diverse 

datasets, and AI-driven Design for Disassembly (DfD) to fully realise AI's potential in creating a more innovative, efficient, and 

sustainable textile industry.  

Keywords: Artificial Intelligence; Circular Economy; Textile Recycling; Predictive Modelling; Computer Vision; Sustainable 

Manufacturing 

1. INTRODUCTION 

Positioning sustainability at the core of its development, the global textile industry—valued at approximately $1.97 trillion in 

2024 and projected to reach $4.01 trillion by 2034—faces the urgent challenge of reconciling formidable growth with pressing 

environmental imperatives [1]. This expansion, driven by rising demand for fast and customised products, is underpinned by a 

predominantly linear model of consumption, which generates an estimated 92 million tonnes of waste annually [2]. This waste 

stream, largely managed through incineration, landfilling, or export, represents a profound environmental burden and a significant 

economic loss, estimated at USD 500 billion each year due to underutilised garments and inadequate recycling [3]. The scale of 

the challenge is further highlighted by the stark disparity in 2024 between the 12% of discarded textiles that are reused and the 

less than 1% of material from used clothing that is recycled into new fibres [4]. It is within this context of systemic inefficiency 
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and environmental impact that artificial intelligence (AI) emerges as a potentially transformative force, offering novel pathways 

to redefine production and consumption paradigms and advance the principles of a circular economy [5]. 

Figure 1 summarises how artificial intelligence and machine learning underpin a transition to circularity in the textile sector. At 

the apex, a boxed node lists principal AI methodologies such as neural networks, convolutional neural networks, random forests 

and computer vision. Arrows descend to three primary application domains: predictive material and product design, 

manufacturing process optimisation and automated quality control. Each domain is annotated with representative activities — 

for example, natural‑fibre composites and smart fabrics under design; dyeing, spinning and weaving under process optimisation; 

and defect detection and garment condition assessment under quality control. These applications converge on a central 

circular‑economy node, illustrated with the recycling motif, which connects to specific closed‑loop outcomes including zero-

waste pattern cutting, colour‑accurate dyeing to reduce rework, textile sorting for recycling and closed‑loop recycling. The visual 

hierarchy emphasises a flow from data‑driven methods to tangible sustainability outcomes, while also implying feedback loops 

for continuous improvement. The diagram is well suited for a review article, clarifying how AI interventions can reduce waste 

and extend product life within an integrated circular framework. 

 
Fig. 1 Transforming Textile Sustainability through Artificial Intelligence: schematic linking AI/ML techniques to design, 

process optimisation, automated quality control and circular‑economy outcomes. 

The concept of a circular economy in textiles aims to minimise waste through reuse, repair, refurbishment, and recycling of 

materials and products, creating closed-loop systems that extend product lifecycles and reduce environmental impact [6]. 

However, transitioning to such a model presents complex challenges, including efficient sorting of textile waste, accurate 

assessment of garment condition, and optimisation of manufacturing processes to reduce waste. AI technologies, particularly 

machine learning, deep learning, and computer vision, offer promising solutions to these challenges by enabling automated, data-

driven decision-making offering speed, accuracy, and scalability across the textile value chain [7]. 
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This review paper examines the integration of AI and ML technologies in the textile industry through a circular economy 

perspective, focusing on their potential to enhance sustainability across multiple domains. The analysis spans AI applications in 

material design and development, manufacturing process optimisation, quality control, textile property prediction, and end-of-

life management. Special attention is given to the role of AI in advancing smart textiles and technical textiles containing flexible 

electronics, while addressing the sustainability challenges associated with these innovative materials. Additionally, the paper 

explores how predictive modelling and computer vision can facilitate textile recycling and reuse, thereby supporting the transition 

to a circular economy. 

Despite these promising applications, the widespread implementation of AI in the textile industry faces significant challenges. 

These include data scarcity, issues of model interpretability and transparency, computational demands, and difficulties in model 

generalisation [7,8]. This review provides a critical examination of these limitations and identifies pivotal future research 

directions required to harness AI's full potential. By synthesising recent advances and highlighting innovative applications, this 

paper offers a comprehensive overview of the role of AI in transforming textile sustainability through a circular economy lens. 

The paper is structured as follows: Section 3 (Results) presents the systematic review findings, organised across three primary 

domains—AI in Textile Design and Materials Development, AI in Sustainable Manufacturing and Process Optimisation, and AI 

for Circular Economy and End-of-Life Solutions. Section 4 (Discussion) provides a critical analysis of the prevailing challenges 

and limitations before delineating specific future research pathways. The review concludes with Section 5, which summarises 

the transformative potential of AI for the sector. 

2 METHODS 

This systematic review followed the PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 

to ensure a comprehensive and transparent methodology for identifying, selecting, and critically evaluating relevant research on 

AI applications in textile sustainability. The review process encompassed clear objectives, specific eligibility criteria, systematic 

search strategies, and a structured data extraction process to minimise bias and ensure methodological rigor [9]. 

2.1 SEARCH STRATEGY AND INFORMATION SOURCES 

A comprehensive literature search was conducted to identify relevant peer-reviewed journal articles, conference proceedings, 

and technical reports published between 2016 and 2024. This eight-year timeframe was selected to capture the most significant 

and recent advancements in the rapidly evolving field of artificial intelligence. The search was executed across several major 

academic databases, including ScienceDirect, IEEE Xplore, Springer Link, Taylor & Francis Online, and SAGE Journals, with 

Google Scholar utilised for supplementary discovery. 

The search strategy employed a structured combination of keywords and Boolean operators, built around three core conceptual 

domains: 

i. Artificial Intelligence Techniques: encompassing terms such as "artificial intelligence," "machine learning," "deep 

learning," and "computer vision." 

ii. Textile and Fashion Context: including "textile," "fabric," "fashion," and "garment." 

iii. Sustainability and Circular Economy: focusing on "circular economy," "sustainability," "recycling," "waste 

management," and "sustainable manufacturing." 

2.2 ELIGIBILITY CRITERIA AND STUDY SELECTION 

The study selection process employed explicit eligibility criteria to ensure the review's relevance and rigour. The inclusion criteria 

required that studies: 

• Primarily investigated AI/ML applications within the textile value chain, encompassing design, manufacturing, quality 

control, sorting, or recycling.  
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• Presented empirical findings or detailed technical implementations, excluding purely conceptual frameworks. 

• Explicitly addressed environmental sustainability objectives, such as waste reduction, resource efficiency, or circular 

economy principles. 

Were published in English between 2016 and 2024 and were available in full text. 

Conversely, studies were excluded based on the following criteria: 

• A sole focus on consumer-facing applications (e.g., e-commerce recommendation systems) without direct 

environmental sustainability implications. 

• Insufficient technical detail or methodological description to evaluate the AI application. 

• Duplicate publications or non-peer-reviewed articles, with the exception of technical reports from established research 

institutions. 

The initial search identified 135 potentially relevant research resources. After removing duplicates and applying eligibility 

criteria through abstract and title screening, 86 records underwent full-text assessment. Ultimately, 49 studies met all inclusion 

criteria and formed the core evidence base for this systematic review. The selection process was conducted independently by two 

researchers, with disagreements resolved through discussion or consultation with a third researcher when necessary. 

2.3 DATA EXTRACTION AND ANALYSIS 

A standardised data extraction form was developed to systematically capture key information from each included study. Extracted 

data included: (1) bibliographic information; (2) research objectives and methodology; (3) AI/ML techniques and algorithms 

employed; (4) textile applications and processes addressed; (5) sustainability benefits and outcomes; (6) datasets used and their 

characteristics; and (7) key findings and limitations. The extracted data were analysed using thematic analysis to identify patterns, 

applications, and challenges across the studies. Results were synthesised narratively and organised according to key thematic 

areas aligned with the textile value chain and circular economy strategies. 

3 RESULTS 

3.1 AI IN TEXTILE DESIGN AND MATERIALS DEVELOPMENT 

The integration of Artificial Intelligence into textile design and materials development represents a paradigm shift in how fabrics 

are conceived, engineered, and optimised for specific applications [10]. AI technologies are enabling unprecedented 

advancements in predictive modelling of material properties, development of smart textiles, and creation of sustainable material 

systems that align with circular economy principles [7,10–13]. These innovations span the entire spectrum of textile design, from 

molecular-level material engineering to functional fabric development [6,11,12]. 

3.1.1 PREDICTIVE MODELLING FOR MATERIAL PROPERTIES AND SMART TEXTILES 

Machine Learning (ML) algorithms have demonstrated considerable efficacy in predicting the properties of polymer textiles and 

fibre composites, offering a pathway to accelerate materials design and reduce reliance on costly experimental procedures [14–

16]. Techniques such as artificial neural networks (ANNs), Gaussian process regression (GPR), and random forests have been 

successfully employed to forecast key mechanical, thermal, and functional properties from material composition and processing 

parameters [14,15]. 

For instance, Le et al. [17] developed a GPR model that accurately predicts the tensile strength of polymer/CNT nanocomposites. 

The model demonstrated high performance, with testing RMSE and MAE values of 5.327 MPa and 3.539 MPa, respectively, 

representing a high degree of accuracy given the broad tensile strength range of the dataset (0.55–190 MPa). This was 

corroborated by excellent correlation metrics, including an R value of 0.993 and an index of agreement (IA) of 0.996 on the test 

set. The study further established the superiority of GPR over six other ML methods based on RMSE. A notable discrepancy 
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was observed in the mean absolute percentage error (MAPE) value of 33.394%, which is mathematically inflated by the wide 

data range and the presence of values close to zero, and thus does not contradict the strong performance indicated by the other 

metrics [17]. This capability to model complex property relationships underscores the transformative potential of ML in guiding 

the development of advanced, sustainable textile materials. 

Further demonstrating this potential, Iannacchero et al. [29] employed an ML-driven approach to optimise the design of 

conductive e-textiles. The study utilised Tencel yarn coated with polypyrrole (PPy), an intrinsically conductive polymer valued 

for its electrical properties and environmental stability [29–32]. To overcome PPy's inherent brittleness, the researchers applied 

Bayesian optimization and Pareto front analysis across 11 experimental trials. This process successfully identified ideal reaction 

conditions that minimised electrical resistance to 0.067 kΩ (22.3 Ω cm⁻¹) while simultaneously enhancing conductivity and cost-

efficiency. The resulting optimised yarns were woven into prototype fabrics, confirming their viability for use in flexible 

wearable systems and heating applications [29]. The environmental robustness of such PPy-based textiles is supported by their 

demonstrated stability through simulated washing cycles and exposure to artificial sweat [29, 33]. 

The transition of AI-enabled smart textiles from research to commercial application is now evident. Companies are leveraging 

AI across the product lifecycle, from material design to data analytics. For example, Myant's SKIIN platform integrates biometric 

monitoring directly into garments for health and wellness applications [34]. In a collaborative effort, Garmin and Chronolife 

have integrated AI-powered smart textiles with embedded sensors into washable garments to facilitate remote patient monitoring 

[35]. Other innovators, such as Sensoria, focus on niche applications like AI-powered sensorised socks for performance 

monitoring and injury prevention [36]. A critical function of AI in this sector is the analysis of vast biometric datasets to generate 

health insights, alongside the optimisation of fabric properties for comfort and functionality. The growing market for these 

intelligent garments across medical, fitness, and occupational sectors highlights a significant shift towards data-driven, functional 

apparel, with AI serving as a core enabler of this innovation. 

3.1.2 SMART TEXTILES AND FUNCTIONAL MATERIALS 

The integration of Artificial Intelligence (AI), particularly machine learning (ML) and deep learning (DL), is catalysing the 

development of next-generation smart textiles. These intelligent, responsive fabrics are finding applications in remote health 

monitoring, performance sport, and adaptive clothing, functioning as continuous, self-powered platforms that acquire, process, 

and interpret physiological and environmental data in real time [11–14,22–28]. A significant impediment to their wider adoption, 

however, is the scarcity of sustainable alternatives to conventional metallic conductors [12,14]. The resource-intensive nature of 

material testing for these digitally enhanced fabrics (encompassing both smart textiles and e-textiles) presents a further barrier. 

ML-assisted approaches directly address these challenges by employing techniques such as Bayesian optimization and Artificial 

Neural Networks (ANNs) to efficiently navigate complex parameter spaces, thereby optimising material compositions and 

manufacturing settings to enhance performance and cost-effectiveness while drastically reducing experimental iterations [14]. 

A representative study by Iannacchero et al. [29] demonstrates this methodology, using ML to design conductive e-textiles based 

on Tencel yarn coated with polypyrrole (PPy). While PPy is prized for its electrical properties and environmental stability [29–

32], its inherent brittleness often limits standalone use in flexible applications. To overcome this, the authors utilised Bayesian 

optimization and Pareto front analysis, which identified optimal reaction conditions within just 11 experimental trials. This 

process minimised the electrical resistance of the yarn to 0.067 kΩ (22.3 Ω cm⁻¹) while simultaneously improving conductivity  

and cost-efficiency. The resulting yarns were successfully woven into prototype fabrics, validating their potential for flexible 

wearable systems and heating applications [29]. The suitability of such PPy-based textiles for durable goods is underscored by 

their demonstrated chemical stability, including resistance to simulated washing cycles and exposure to artificial sweat [29, 33]. 

The translation of AI-enabled smart textiles from research to commercial reality is now underway. Beyond optimising material 

properties, AI is critical for deriving insights from the vast datasets these garments collect. For instance, companies like Myant 

leverage AI in their SKIIN platform for continuous biometric monitoring in health and wellness garments [34]. Similarly, 

collaborations such as that between Garmin and Chronolife integrate AI-powered smart textiles with wearable devices to advance 

remote patient monitoring [35]. Other innovators, including Sensoria, focus on niche applications like AI-powered sensorised 
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socks for performance analytics and injury prevention [36]. This evolving market segment, spanning medical, fitness, and 

occupational wear, highlights a decisive shift towards data-driven, functional apparel where AI is integral to both the product's 

functionality and its sustainable development. 

3.1.3 FABRIC HANDFEEL OPTIMISATION 

The subjective perception of fabric 'handfeel' represents a complex optimisation challenge that Artificial Intelligence is uniquely 

positioned to address. Machine Learning (ML) and Deep Learning (DL) models are now capable of automating the prediction of 

subjective tactile properties by correlating them with objective data from tactile sensors, visual inputs, and mechanical testing 

[10, 37, 38]. This capability offers a substantial sustainability advantage; by enabling accurate digital prototyping, it significantly 

reduces the reliance on physical sample production and the associated consumption of energy and materials inherent in traditional 

laboratory testing [38, 39]. 

A systematic review of these AI-driven techniques confirms their high predictive performance, consistently exceeding 80% 

accuracy in forecasting key handfeel attributes such as softness, stiffness, and drape, even with datasets ranging from dozens to 

several hundred fabric samples [10]. This performance is evidenced by strong results across both classification and regression 

tasks. For instance, in classification: 

• Models achieved 92% accuracy for texture recognition (roughness/smoothness) [40]. 

• Deep learning models like ResNet-50 reached up to 99.3% accuracy in classifying woven fabric types [41]. 

For regression-based prediction of continuous subjective properties, models demonstrated high correlation and low error rates: 

• Artificial Neural Networks (ANNs) showed 83.5% prediction accuracy for drapability and tactile softness [42]. 

• Models predicting fundamental mechanical properties—key inputs for handfeel—achieved accuracies of 90.2% [43]. 

• An Adaptive Neuro-Fuzzy Inference System (ANFIS) predicting tactile comfort scores yielded an exceptionally low 

RMSE of 0.0122, significantly outperforming standard deviation benchmarks [44]. 

• Furthermore, bending stiffness was predicted with error margins consistently below 10% [41] 

These AI approaches represent a significant advancement over traditional objective measurement methods like the Kawabata 

Evaluation System (KES) and Fabric Assurance by Simple Testing (FAST), which rely on physical measurements, they are 

constrained by being time-consuming, costly, and resource-intensive, and fundamentally struggle to address nonlinear 

relationships between various fabric properties. In contrast, AI models (like SEDDI Textura) excel in identifying these hidden 

patterns and offer real-time optimisation, critical for meeting consumer demands and accelerating product development. 

Furthermore, AI-driven handfeel prediction contributes to sustainability by reducing the need for physical samples and enabling 

right-first-time production [10,38]. 

3.1.4 VIRTUAL TRY-ON 

Virtual Try-On (VTO) technologies, encompassing 3D design and Augmented Reality (AR), are emerging as critical enablers of 

sustainability within the textile industry by advancing circular economy objectives [45, 46]. These systems contribute to 

sustainability across two primary domains. Upstream, VTO facilitates zero-waste design and digital prototyping, drastically 

reducing the need for physical samples and thereby curtailing raw material consumption, waste, and costs associated with the 

design cycle [45]. Downstream, by providing accurate visualisations of fit and style, VTO mitigates the environmental burden 

of high online return rates, directly reducing landfill waste and the carbon emissions from reverse logistics [45, 47–49]. 

Empirical evidence substantiates these impacts. A study of the Lucky Chouette brand, analysing 11,029 transactions over 2.5 

months, demonstrated that VTO implementation led to a 27% reduction in product returns and increased average sales per 

customer [50]. Complementary research on Taobao, using Partial Least Squares Structural Equation Modeling (PLS-SEM) on 

366 consumer responses, confirmed that advanced VTO features can stimulate purchasing while promoting sustainability by 

reducing irrational stockpiling and subsequent waste [49]. Further validation comes from a mixed-methods study on 4D golf 

apparel simulation, where 76.9% of participants found the dynamic interface effective for judging fit, highlighting its potential 
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to minimise returns due to size uncertainty [48]. 

Commercial applications reinforce these findings. The AI-powered sizing platform YourFit (by 3DLOOK) enabled a 30% 

reduction in returns for the brand 1822 Denim, directly curtailing waste from reverse logistics [51]. Similarly, TA3 SWIM 

reported that 80% of customers purchased the AI-recommended size, with less than 10% of returns attributed to fit issues and a 

dramatic reduction in 'bracketing' behaviour to under 2% [52]. Collectively, these outcomes underscore the significant role of 

VTO and AI in enabling data-driven sizing, reducing overproduction, and extending garment lifecycles through improved first-

time fit accuracy. 

Table 1 summarizes the key achievements, AI techniques, and real-world examples of AI applications across textile design and 

materials development. 

 

Table 1: AI Applications in Textile Design and Materials Development 

Application 

Area 
AI Techniques Key Achievements Paper Study Cases / Real-World Example Ref. 

Property 

Prediction 

Gaussian 

Process 

Regression 

(GPR), ANN, 

Random Forests 

Predict tensile strength 

and aging behavior, 

achieved RMSE values as 

low as 5.327 MPa for 

nanocomposites 

A GPR-based model predicts the tensile 

strength of polymer/CNT nanocomposites. The 

Random Forest Regressor demonstrated the 

best performance (R² of 0.92) in predicting the 

natural aging times of glass/epoxy composites. 

[17,21] 

  

Smart Textile 

Development 

Bayesian 

Optimization, 

Pareto Front 

Analysis 

Identified optimal 

conditions to minimize 

electrical resistance to 

0.067 kΩ in conductive 

yarns 

Bayesian optimization was used to design fully 

textile-based conductive e-textile prototypes 

using Tencel yarn coated with polypyrrole 

(PPy). Companies like Myant (SKIIN 

platform), Chronolife, and Sensoria 

continuously advancing in AI-powered smart 

textile. 

[29,34–36] 

Fabric Handfeel 

Optimization 

CNN, Hybrid 

Models 

Predict softness, stiffness, 

and drape with accuracy 

exceeding 80%; The AI 

approach supports "right-

first-time" production by 

reducing the need for 

physical samples. 

92% classification accuracy for texture 

recognition (roughness / smoothness) and 

99.3% accuracy in classifying woven fabric 

types in studies. 

[10] 

Virtual Try-On 

(VTO) 

3D virtual 

design, 

Augmented 

Reality (AR), 

AI-driven 

mobile body 

scanning 

Enables “zero-waste” 

design by minimizing 

physical samples; 

mitigates the substantial 

environmental burden of 

high online return rates. 

Some papers reported significant reduction in 

product return rate (27%), irrational stockpiling 

and waste; 30% reduction in product returns for 

1822 Denim by 3DLOOK's YourFit platfor; 

80% of customers purchasing the correct size in 

TA3 SWIM. 

[45–52] 

 

3.2 AI IN SUSTAINABLE TEXTILE MANUFACTURING AND PROCESS OPTIMISATION 

The implementation of Artificial Intelligence in textile manufacturing processes has ushered in unprecedented efficiencies, 

substantial waste reduction, and enhanced sustainability across production stages. From spinning and weaving to dyeing and 

finishing, AI-driven solutions optimise resource consumption, improve product quality, and minimise environmental impact, key 

objectives in the transition to a circular economy. These technological advancements enable data-driven decision-making that 

aligns economic objectives with ecological responsibility. 
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3.2.1 PROCESS OPTIMISATION AND PREDICTIVE MAINTENANCE 

AI and ML algorithms have demonstrated remarkable effectiveness in optimising complex textile manufacturing parameters and 

predicting maintenance needs, leading to significant reductions in downtime, often cited between 20–45% [53]. In spinning and 

weaving processes, AI analyses real-time sensor data on machine vibrations, speed, and tension to make instantaneous 

adjustments that ensure consistent quality while predicting maintenance requirements [54,55]. This predictive modelling 

capability was exemplified in research conducted with a Portuguese textile company, where Automated Machine Learning 

(AutoML) tools were employed to predict yarn breaks during fabric production. The H2O AutoML model achieved an R² of 0.73 

for predicting weft breaks, enabling proactive measures such as adjusting loom speed, providing special operator attention, or 

modifying yarn materials to prevent production stoppages [56]. Supporting the tangible benefits of this approach, similar 

applications of AI-driven predictive maintenance in textile manufacturing have led to quantifiable outcomes, including 40% 

reduction in unplanned downtime within six months of implementing smart sensor monitoring in a mid-sized manufacturer [57], 

19% improvement in overall reliability, leading to a reduction in unplanned downtime in Jaya Shree Textiles (India) [58], 32% 

reduction in unplanned downtime and an 18% decrease in maintenance costs over a 90-day trial period in a manufacturer that 

partnered with Mutually Human to adopt Microsoft Fabric platform [59]. 

The optimisation capabilities extend to dyeing processes, where AI significantly reduces water, energy, and chemical 

consumption. AI-driven technologies can drastically reduce the amount of water and chemicals required, with capabilities 

extending to cutting water usage by up to 95% and leading to energy savings of up to 50% [60]. Ant colony optimisation (ACO) 

algorithms have been successfully applied to predict optimal dye recipes for achieving uniform colour across cotton and 

bicomponent polyester filament blends. These algorithms minimise colour deviation between reactive dyeing of cotton and 

disperse dyeing of polyester, ensuring both components achieve the same shade with minimal differences [14,61]. This precise 

colour matching reduces the need for re-dyeing, as the effective algorithm allows for finding the right combination of reactive 

dyes without having to make multiple corrections. This capability offers the possibility to remedy wastage during the use of dyes 

and to reduce the quantity of water used during colour corrections, which traditionally consumes additional resources and 

generates wastewater [60,61]. 

3.2.2 AI-ENHANCED QUALITY CONTROL 

Computer vision systems powered by advanced AI have revolutionised quality control in textile manufacturing, enabling 

automated, real-time defect detection with superhuman accuracy. These systems utilise high-resolution cameras and 

sophisticated AI-based machine vision algorithms [62,63]. Such automated optical inspection systems achieve detection 

accuracies ranging from over 90% up to 99% [64,65], with specific enhanced models reaching a 97.49% mAP [62], dramatically 

surpassing the manual human accuracy rate of 60–75% [63,66]. For instance, WiseEye can detect, classify, and grade over 50 

common types of defects (or around 40 common fabric defects), including flaws like holes, foreign yarn, slubs (thread errors), 

dirty marks, dye patches, and oil patches, as well as subtle anomalies such as folds and arc edges, across common types of woven, 

knitted and nonwoven textile materials with different colors and patterns [64,66,67]. These systems enable inspection across 

diverse materials and patterns at speeds up to 60 metres/minute, significantly exceeding the human speed of 12–15 metres/minute, 

while some models can process frames in real-time, achieving high speeds like 102.1 FPS [66,68]. Crucially, these systems 

incorporate industry-specific optimization, acknowledging that an undetected defect (False Negative - FN) usually has a higher 

cost to the company, leading to the implementation of FN reduction methods and optimization for key metrics like Precision and 

Recall [68,69]; resulting performance confirms this focus, with certain enhanced models achieving a Recall of 98.45% and 

Precision of 91.55% [62], and an improved YOLOv8n model delivering 96.3% Precision and 92.8% Recall [67]. This 

competitive market features major providers offering commercial systems, such as ISRA Vision GmbH with its Smash inline 

inspection system and Cloud Xperience solution employing AI-supported classification and segmentation [70], and partnerships 

demonstrating real-world deployment, like the textile manufacturer utilizing an Advantech Automated Optical Inspection (AOI) 

system to achieve 99% detection accuracy using the WISE-PaaS Cloud Platform [65]. 

The integration of AI with machine vision enables adaptive learning, allowing self-learning AI systems to improve inspection 

accuracy over time by recognising new defect and adapting to varying production conditions, ensuring long-term reliability [71–
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73]. This capability has demonstrated measurable impact in industrial applications, with implementations like Robro Systems' 

Kiara Web Inspection System (KWIS) achieving exceptional accuracy, such as detecting up to 99.2% of all defects [73,74]. 

While some machine vision systems generally report an improvement in defect detection accuracy by up to 30% compared to 

manual inspection methods [75], KWIS deployments have shown even stronger industrial results, including a 40% reduction in 

rejection rates and a 15% increase in production speed [74]. Such advancements directly contribute to sustainability by 

identifying defects early in the production process, reducing material waste (with AI-driven systems capable of reducing fabric 

waste by approximately 20% in large-scale facilities [71]) and preventing resource-intensive rework operations [72,73,75]. 

3.2.3 SUSTAINABLE PRODUCTION PLANNING 

AI-driven predictive analytics, leveraging Machine Learning algorithms such as Long Short-Term Memory (LSTM) and 

Reinforcement Learning (RL), enable more sustainable production planning through demand forecasting and resource 

optimization [76,77]. Natural Language Processing (NLP) algorithms analyse customer reviews, social media trends, and market 

reports to assess consumer attitudes regarding particular styles, colours, materials, and brands in real time [78]. Predicting 

demand patterns this way helps manufacturers avoid overproduction and inventory waste, leading to a reduction in forecasting 

errors by up to 25% [77]. This data-driven approach to production planning aligns with circular economy principles by ensuring 

that production volumes more closely match consumption needs, reducing the volume of unsold goods that typically end up as 

waste [5]. Several brands utilize these AI techniques. Zara employs AI-powered social listening and Consumer Sentiment 

Analysis (analysing text, images, and videos) to detect emerging trends, enabling them to issue production orders in precise 

batches, which has contributed to 85% of items selling at full price (versus a 60% industry average) and has reduced unsold 

finished goods by nearly 20 percent across pilot categories [79,80]. Similarly, subscription service Stitch Fix relies on Natural 

Language Processing (NLP) to analyse more than 4.5 billion text data points shared by customers, resulting in 70% of re-buys 

being driven by AI recommendations, lifting engagement and conversions by 5% to 12% respectively, and achieving a 9–10% 

growth in average order value [80–82]. Furthermore, a collaboration with Tommy Hilfiger leveraged NLP and social media 

listening to analyse consumer sentiments and trends, helping the brand rapidly respond to emerging trends and reduce the time-

to-market for new collections [82,83], while The North Face uses NLP in its online shopping assistant to understand customer 

needs, successfully contributing to increased online sales and fewer returns [83].  

Furthermore, AI systems facilitate energy efficiency in textile manufacturing facilities through IoT-based sensors and AI-driven 

monitoring that optimise energy consumption across production processes. These systems, often utilizing models like Adaptive 

Deep Reinforcement Learning (ADRL-BO), identify energy-intensive operations and suggest operational adjustments to reduce 

power consumption without compromising output quality [84]. The cumulative effect of these AI applications, from predictive 

maintenance to quality control and production planning, contributes to a significant reduction in the environmental footprint of 

textile manufacturing [85]. This technological integration not only achieves measurable resource savings (such as an average of 

35% energy savings and 45% maintenance cost reduction) but also strengthens the economic competitiveness of manufacturers 

[84,86]. 

3.3 AI FOR CIRCULAR ECONOMY AND END-OF-LIFE SOLUTIONS 

Artificial Intelligence plays a transformative role in advancing circular economy principles within the textile industry, 

particularly in extending product lifecycles, optimising recycling processes, and creating new pathways for waste valorisation 

[5,87]. AI technologies enable innovative approaches to textile waste management, utilizing integrated pipelines built on Industry 

4.0 principles, including automated sorting, precise material identification using spectral imaging, condition assessment, and 

recycling process optimisation via robotics and laser segmentation (e.g., targeted component removal) [7,88,89], which are 

critical for transitioning from a linear "take-make-dispose" model to a circular system that maximises resource efficiency and 

establishes digital traceability aligned with global sustainability goals [5,87]. 

 

 



 

   

Textile Science & Research Journal

ISSN:3059-846X Volume  –  1, Issue  –  1, 2025 

DOI: https://doi.org/10.63456/tsrj-1-1-22 

© Author(s) 2025. This work is distributed under the Creative Commons BY- 4.0 license: 

https://creativecommons.org/licenses/by/4.0/ 

54 

 

 

 
     

3.3.1 AUTOMATED TEXTILE SORTING AND WASTE MANAGEMENT 

The sorting of textile waste represents a significant bottleneck in advancing circularity, particularly with the growing complexity 

of material compositions in modern textiles. AI-driven systems, especially those utilising computer vision and deep learning 

algorithms, have demonstrated remarkable capabilities in automating and enhancing the accuracy of textile sorting operations. 

Convolutional Neural Networks (CNNs) and hybrid models can classify textiles by type, physical condition, and recyclability, 

addressing a critical challenge in textile waste management. These systems can identify material composition, colour patterns, 

and structural properties at speeds and levels unattainable through manual sorting [89,90]. The application of ML in textile waste 

sorting has achieved impressive results, with classification accuracy of up to 100% for pure fibres, significantly improving the 

efficiency of recycling operations. However, the sources confirm these peak results were attained under highly controlled, lab-

based conditions using samples with assured composition from commercial catalogues. The main limitation for real-world 

application remains the need for a sufficiently large database with samples of known composition for supervised training, 

especially since factors prevalent in a 'noisy, real-world recycling facility', such as blended fabrics, coatings, aging effects, and 

moisture, introduce spectral variability that significantly reduces classification reliability [90]. On the industrial side, the Berlin-

based innovator Circular.fashion is a partner in the FashionSort.AI project, developing an innovative digital sorting solution that 

uses image recognition and AI to efficiently assign discarded textiles for re-use or recycling [91]. This high-precision sorting is 

essential for maintaining the quality of recycled materials, as contamination from different fibre types can compromise the 

properties of recycled textiles. Furthermore, AI-powered sorting enables the identification of garments suitable for reuse versus 

those destined for recycling, maximising the economic value and environmental benefits of textile waste streams [89,90]. 

3.3.2 CONDITION ASSESSMENT FOR SECOND-LIFE MARKETS 

AI technologies have revolutionised the assessment of garment condition, enabling accurate evaluation of wearability and quality 

for second-hand markets. Computer vision systems can detect subtle signs of aging and damage, such as colour fading, pilling, 

surface abrasion, and seam damage, which determine whether garments are suitable for resale, repair, or recycling. This 

automated assessment capability is particularly valuable for charitable organizations and second-hand retailers that traditionally 

rely on volunteer labour or manual sorting, which is subjective and time-consuming [7].  

The integration of AI in condition assessment supports the second-hand clothing market by providing consistent, objective 

evaluations that enhance consumer trust and enable accurate pricing [7]. This burgeoning ecosystem is demonstrated by key 

industry players leveraging AI and digital infrastructure: the luxury resale platform Vestiaire Collective utilizes AI in customer-

facing applications, having integrated an AI search engine that converts keyword searches into image pattern recognition for 

more precise results, alongside plans for AI-powered price recommendations [92]. Furthermore, companies like the traceability 

leader TrusTrace have launched AI-driven upgrades to their platforms and are recognized as Representative Providers for Digital 

Product Passports (DPPs), helping manage complex traceability data necessary for long-term circularity [93]. By extending the 

lifespan of garments through facilitated reuse, AI directly contributes to waste reduction and resource conservation. Research 

indicates that each garment kept in use for longer periods through second-life markets significantly reduces its environmental 

footprint across metrics including water consumption, carbon emissions, and waste generation [7,94]. 

3.3.3 RECYCLING PROCESS OPTIMISATION AND DESIGN FOR DISASSEMBLY 

AI plays a crucial role in optimising recycling processes for complex textile products, particularly those incorporating smart 

textiles with integrated electronics. The convergence of textiles and electronics has created sustainability challenges, as these 

hybrid materials are difficult to disassemble and recycle using conventional methods. AI-assisted approaches address these 

challenges by leveraging advanced identification systems, enabling efficient automated dismantling, drawing on methodologies 

developed for comparable complex hybrid products like e-waste, and pioneering novel recycling techniques [95–97]. 

AI models and robotics can optimise the disassembly and separation of conductive materials from textile substrates, facilitating 

the recovery of precious metals and specialised polymers [95]. Additionally, generative AI systems use multi-objective 

optimization frameworks to suggest design modifications that enhance recyclability, such as minimizing textile waste or 
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facilitating easier disassembly via modular architectures and detachable systems,an approach known as design for disassembly 

(DfD) [95,98].  

The potential of AI to drive circularity extends to new business models that prioritise service and performance over ownership. 

AI-enabled platforms and digital infrastructure (like Digital Product Passports) can facilitate clothing rental, repair services, and 

remanufacturing by accurately assessing condition, predicting remaining lifespan, and identifying optimal maintenance 

requirements. These innovative approaches, powered by AI, represent a fundamental shift toward dematerialisation and extended 

product responsibility that aligns with circular economy principles [99]. 

3.4 AI-ENABLED TEXTILE RECYCLING TECHNOLOGIES 

Recent advancements in AI-enabled recycling technologies have demonstrated significant potential for addressing the global 

textile waste crisis [7]. These technologies leverage computer vision, robotics, and machine learning to automate the dismantling 

and processing of used garments, transforming them into high-quality recycling feedstock [100,101]. The development of these 

systems represents a critical innovation for scaling circular economy solutions in the fashion and textile industry. 

3.4.1 AUTOMATED GARMENT DISMANTLING SYSTEMS 

Fully automated systems for garment identification, sorting, and disassembly have emerged as promising solutions for addressing 

the labour-intensive nature of textile recycling, where inaccurate manual sorting often leads to material inefficiency and 

contamination [89]. Researchers at RIT's Golisano Institute for Sustainability (GIS) have developed an automated system that 

processes used clothing for high-quality textile recycling using AI and laser technology. The goal of this system is to transform 

post-consumer clothing into high-quality, reliable feedstock, addressing the fact that recyclers currently suffer substantial 

production yield losses ($7.5B) due to bad feedstock [100]. The system begins with a conveyor-fed imaging station where three 

specialised cameras generate a high-resolution, multi-dimensional map of the garment, enabling fibre composition analysis down 

to the millimetre level [100]. 

The system leverages artificial intelligence and machine vision to identify and remove non-recyclable elements from clothing, 

including zippers, logos, and mixed materials. This capability addresses a significant challenge in textile recycling, as these 

components often contaminate recycling streams and reduce the quality of recycled materials [96]. The AI algorithms interpret 

infrared reflections to define fibre type and identify features like collars and cuffs, then pass this data to a robotic laser-cutting 

system that removes non-recyclable elements with precision without damaging reusable material. Once processed, the cleaned 

materials are sorted into separate bins for recycling, creating high-quality feedstock that can be reintegrated into manufacturing 

processes [100]. 

3.4.2 INTEGRATION WITH RECYCLING INFRASTRUCTURE 

The effectiveness of AI-enabled textile recycling depends on seamless integration with existing and emerging recycling 

infrastructure. The RIT system demonstrates this integration through collaborations with industry partners including Nike, 

Goodwill, and Ambercycle, a company pioneering polyester recycling. This collaborative approach ensures that the technology 

addresses real-world challenges and can be scaled effectively across different recycling contexts [100]. 

Operating at approximately one garment every 10 seconds, this automated approach offers significant improvements over 

conventional sorting, which is labor-intensive and suffers from inefficiency and human error [89]. Although this technology was 

built considering its scalability to be both economical and replicable, scaling these advanced technologies in general, which 

utilize AI, multiple cameras, and a robotic laser-cutting system, requires a high initial investment cost [95,100]. Therefore, despite 

the benefit that these technologies offer, long-term economic viability and cost-benefit analysis must carefully weigh the high 

investment in sophisticated technology. A detailed synthesis of AI technologies, key achievements, sustainability benefits, and 

real-world examples across textile manufacturing and circular economy solutions is provided in Table 2. 
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Table 2: AI Applications in Sustainable Textile Manufacturing 

Application 

Area 
AI Techs Key Achievements 

Sustainability 

Benefits 

Paper Study Cases / 

Real-World Example 
Ref. 

Predictive 

Maintenance 
AutoML, H2O 

Achieved an R² of 

0.73 for predicting 

;yarn break prediction

led to more than 30% 

reduction in 

unplanned downtime; 

19% improvement in 

overall reliability; 

18% decrease in 

maintenance costs. 

;Reduces downtime

optimizes 

manufacturing 

processes. 

Predictive model was 

deployed at a Portuguese 

textile company to predict 

weft breaks; Another case 

study in Jaya Shree 

Textiles (India); Adopting 

Microsoft Fabric platform 

over a 90-day trial in a 

manufacture. 

[56–59] 

Color 

Matching 

(Process Opt.) 

Ant Colony 

Optimization 

(ACO), ANN 

Successfully 

predicted optimal dye 

recipes; minimized 

color deviation 

between cotton and 

polyester blends. 

Reduces water, 

energy, and 

chemical 

consumption; 

minimizes 

resource-intensive 

re-dyeing. 

ACO algorithms reduced 

the need for multiple 

colour corrections and 

subsequent wastewater 

generation by finding the 

right combination of 

reactive dyes. 

[14,60,61] 

Quality 

Control 

Computer 

Vision, Deep 

Learning 

Achieved more than 

s90% accuracy; speed

up to 60 

metres/minute; led to 

a 25% improvement 

in defect detection. 

Reduces material 

waste (by 

approximately 20% 

in large-scale 

facilities); prevents 

costly rework 

operations. 

Systems like WiseEye, 

ISRA Vision GmbH, 

Advantech Automated 

Optical Inspection (AOI), 

and Robro Systems' KWIS 

as major providers with up 

to 99% detection accuracy. 

[64–66,70–

74] 

Sustainable 

Production 

Planning 

LSTM, 

Reinforcement 

Learning (RL), 

Natural 

Language 

Processing (NLP) 

Reduced forecasting 

errors by up to 25%; 

contributes to a 

reduction in unsold 

finished goods. 

Ensures production 

volumes closely 

match consumption 

needs; avoids 

overproduction and 

inventory waste. 

20% reduction in unsold 

finished goods by applying 

AI-powered social 

listening in Zara; 70% of 

re-buys being driven by 

using NLP in Stitch Fix; 

Managing time-to-market 

for new collections by 

using NLP in Tommy 

Hilfiger. 

[76–83] 

Automated 

Textile Sorting 

CNNs, Hybrid 

Models, 

Computer Vision 

Achieved 

classification 

accuracy up to 100% 

for pure fibres (under 

controlled 

conditions). 

Essential for 

accurate material 

identification; 

critical for 

maintaining the 

quality and value 

of recycled 

materials. 

An innovative digital 

sorting solution using 

image recognition and AI 

in Circular.fashion. 

[89–91] 

Condition 

rAssessment fo

Second-Life 

Markets 

Computer 

Vision, AI 

Detects subtle signs 

of aging and damage, 

,such as colour fading

pilling, and surface 

abrasion. 

Provides objective, 

consistent 

evaluation for 

reuse; enhances 

consumer trust; 

extends garment 

precise results in luxury 

resale in Vestiaire 

Collective; manage 

traceability data necessary 

for Digital Product 

Passports (DPPs) in 

[92–94] 



 

   

Textile Science & Research Journal

ISSN:  3059-846X Volume  –  1, Issue  –  1, 2025

DOI: https://doi.org/10.63456/tsrj-1-1-22 

© Author(s) 2025. This work is distributed under the Creative Commons BY- 4.0 license: 

https://creativecommons.org/licenses/by/4.0/ 

57 

 

 

 
     

lifespan through 

facilitated reuse. 

TrusTrace. 

Recycling 

Process 

Optimisation / 

Design for 

Disassembly 

(DfD) 

ML Algorithms, 

Generative AI, 

Robotics 

Predicts the 

behaviour of 

composite materials 

during recycling 

processes; suggests 

design modifications 

that enhance 

recyclability. 

Enables more 

efficient recovery 

of valuable 

components, 

including precious 

metals; supports 

modular design for 

easy separation. 

Suggesting design 

modifications (like 

standardizing material 

combinations) by multi-

objective optimization. 

[95–98] 

Automated 

Garment 

Dismantling 

AI, Machine 

Vision, Robotic 

Laser-Cutting 

The prototype system 

can process a new 

garment 

approximately every 

10 seconds; identifies 

and removes non-

recyclable 

components (zippers, 

logos) with precision. 

Transforms post-

consumer clothing 

into high-quality, 

reliable recycling 

feedstock; 

addresses the 

findustry problem o

production yield 

losses ($7.5B) due 

to bad feedstock. 

RIT's system using 

specialized cameras and 

AI to map garments and 

guide a robotic laser-

cutting system to remove 

non-recyclable 

contaminants. 

[89,100] 

4 DISCUSSION 

4.1 CHALLENGES AND LIMITATIONS 

Despite the significant advancements and promising applications of Artificial Intelligence in transforming textile sustainability, 

several challenges remain that must be addressed to fully realise AI's potential in advancing circular economy principles. This 

section examines these limitations, proposes future research directions, and provides concluding remarks on the evolving 

landscape of AI-driven sustainability in the textile industry. 

4.1.1 TECHNICAL AND IMPLEMENTATION CHALLENGES 

The widespread adoption of AI in the textile industry faces several significant technical and operational barriers. Data scarcity 

represents a fundamental challenge, as many AI models require large, diverse, and high-quality datasets for effective training 

and validation [7]. This scarcity is rooted in complex systemic challenges, including the reluctance of companies to share 

proprietary or commercially sensitive information due to ownership or trust issues. Furthermore, textile industry players and 

contributors have different data management capacities, which in many cases low digital maturity has made the data handling 

and documentation processes throughout the textile value chain highly difficult. This prevents the harmonization and 

standardization needed for efficient transfer across systems [102]. In addition, carefully labelling datasets is labour-intensive and 

costly [103]. Current datasets for textile applications are often limited in size and scope, with most research focusing on fabric 

swatches (20 studies) rather than whole garments (only 7 instances) [7]. This limitation affects model generalisability and real-

world performance across diverse textile types and complex scenarios.  

Additionally, the black-box nature of many complex AI algorithms, particularly deep learning models, raises concerns about 

interpretability and trust among industry stakeholders who require transparent decision-making processes [103]. The primary 

response to this issue is the widespread adoption of Explainable Artificial Intelligence (XAI) techniques like LIME and SHAP. 

These methods are designed to generate post hoc explanations to help users understand the output of black box models [104]. 

However, these generic XAI tools are often "inadequate to be directly used" in complex manufacturing environments. This 

insufficiency arises because their underlying mechanisms, such as LIME's image perturbation, can "mislead the underlying 

model" and yield "poor explanations" by introducing artifacts that models confuse with actual defects [105]. Furthermore, 

SHAP's utility may be limited in "complex, interconnected systems" (such as dynamic production processes) due to its 
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assumption of feature independence [104]. Therefore, where XAI methods are insufficient, the definitive approach suggested by 

the sources is Causality Analysis or Causal Discovery, which provides a "transparent white-box model" where causal relations 

are explicitly known. This technique offers a deeper understanding beyond mere feature importance by uncovering cause-and-

effect relationships, empowering domain experts to identify the root causes of variations, track changes in process dynamics 

through interpretable causal graphs, and ultimately enable proactive intervention [104]. 

Implementation challenges include the high cost of AI integration, which is financially prohibitive for many organizations, 

demanding substantial upfront investments and extensive resources, thereby limiting accessibility especially for small and 

medium enterprises [103], and the compatibility issues between advanced AI systems and existing manufacturing infrastructure, 

especially those textile sectors with very low digital maturity level [102]. Many fashion and luxury brands operate with costly 

legacy systems that are rigid, not scalable, and have restricted data warehouses, which struggle to incorporate new data sources 

[102]. Furthermore, the rapid evolution of AI technologies creates a skills gap in the textile workforce, as specialised expertise 

is required to develop, implement, and maintain these systems effectively [102]. 

For smart textiles and textronics containing electronics, additional challenges emerge regarding end-of-life management and 

recycling complexities. The integration of flexible electronics, conductive polymers, and sensors creates hybrid materials that 

are difficult to disassemble and recycle using conventional methods. The presence of these electronic components, which often 

contain hazardous materials such as heavy metals or toxic chemicals, along with the diversity of material combinations, poses 

significant challenges for waste management and threatens to exacerbate the growing problem of e-waste if not properly 

addressed through circular design principles. These principles must include modular design to ensure electronic components and 

fabrics are easy to separate [96]. 

4.1.2 ECONOMIC AND SOCIAL CONSIDERATIONS 

Beyond technical challenges, the integration of AI in textile sustainability raises important economic and social considerations. 

The economic viability of AI solutions remains a concern, particularly for small and medium enterprises (SMEs) that may lack 

the capital for significant technological investments. While AI offers long-term cost savings through efficiency improvements 

and waste reduction, the initial investment required for AI infrastructure, training, and development can be prohibitive for smaller 

players in the industry [103,106]. This economic barrier, could potentially risk concentrating advanced AI technology adoption 

within larger enterprises, thereby widening the gap between large enterprises and SMEs within the innovation ecosystem and 

leading to MSME marginalization [107]. To address this structural and financial disparity, specific solutions are necessary to 

democratize access: Technologically, the high cost of implementation can be mitigated through the adoption of cloud computing 

and the strategic adoption of affordable AI-as-a-Service (AIaaS) models without initial equipment investment [108]. Structurally 

and through policy, governments must provide targeted financial incentives such as tax breaks or grants to encourage AI 

adoption, especially for SMEs [107,109]. Furthermore, establishing regional innovation hubs and public-private partnerships can 

reduce geographic disparities in adoption by centralizing funding, technology, and expertise [107]; a notable example of such 

efforts aimed at innovation in the textile sector is the Advanced Functional Fabrics of America (AFFOA). 

Social implications include potential job displacement as automation reduces the need for manual labour in areas such as quality 

inspection, sorting, and some aspects of manufacturing. The transition to AI-driven processes may marginalise workers with 

traditional textile skills while creating demand for new technical expertise [107]. However, the net effect is complex because AI 

is also likely to complement human work, requiring a shift to a new labour structure. This transformation fosters a high demand 

for new technical expertise, specifically roles for AI/ML specialists and data analysts, and necessitates cognitive skills like 

creative problem solving and collaboration in hybrid human-robot teams [110]. This structural change mandates investment in 

workforce retraining and skills development to ensure a just transition toward more sustainable production models [108]. 

Additionally, there are concerns about the environmental footprint of AI technologies themselves, including the energy 

consumption of data centres and computing resources required for training and operating complex models, underscoring the need 

for energy-efficient algorithms and sustainable infrastructure [103]. 
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4.2 FUTURE RESEARCH DIRECTIONS 

Several promising research directions emerge to address current limitations and advance the application of AI for textile 

sustainability. There is a critical need for larger and more diverse datasets that encompass varied textile types, conditions, and 

production scenarios. Collaborative efforts between industry and academia could facilitate the creation of standardised, open-

source datasets following FAIR (Findable, Accessible, Interoperable, Reusable) principles [111], to accelerate model 

development and benchmarking. 

The development of physics-informed neural networks represents a promising approach to enhancing model robustness while 

reducing data requirements. By incorporating domain knowledge and physical principles into AI architectures, these models can 

improve generalization to unseen conditions and provide more reliable predictions [112]. Additionally, research should focus on 

explainable AI techniques that enhance model interpretability, building trust among manufacturers and consumers while 

providing valuable insights into the relationships between material composition, processing parameters, and final properties. 

Future efforts should also prioritise AI-driven design for circularity, developing systems that optimise not only for performance 

and cost but also for recyclability, disassembly, and material health. This includes creating digital product passports that track 

composition and facilitate sorting, as well as generative AI tools that suggest designs minimising waste and enabling easier 

material recovery. Research into AI-assisted development of mono-material textiles with maintained functionality could 

significantly enhance recyclability while meeting performance requirements. This potential is strongly supported by successful 

Design for Recycling (DfR) applications in the plastics industry, where converting multi-material components into mono-

material solutions has been shown to enhance recyclability, maintain the required functionality, and result in substantial 

environmental and economic reductions [113]. 

One significant future research direction lies in the development of a fully integrated multi-modal AI framework that bridges the 

gap between end-of-life sorting and real-time life cycle assessment (LCA). While multi-modal AI models combining computer 

vision, sensor data (e.g., hyperspectral imaging), and digital product passports (DPPs) are showing promise for robust sorting, 

their impact can be amplified by coupling these insights with dynamic LCA. This integrated approach would allow an AI system 

not only to make optimal sorting decisions based on material composition and origin, but also to provide real-time environmental 

impact data that quantifies the sustainability benefits of specific recycling pathways. Such a system could automatically update 

LCA models with real-time end-of-life processing data, moving beyond traditional, static assessments to create a dynamic 

feedback loop that continuously informs and improves circular economy strategies for textiles. This combined effort would 

accelerate data collection, enhance accuracy, and provide designers and manufacturers with actionable insights on the true 

environmental costs and benefits of their choices. 

4.3 POLICY AND IMPLEMENTATION FRAMEWORK 

The successful integration of AI for textile sustainability requires supportive policy frameworks and implementation strategies, 

which must be specifically structured around circular economy drivers such as Extended Producer Responsibility (EPR) schemes. 

Governments and industry bodies can play a crucial role in facilitating this transition through targeted interventions such as 

research funding, standards development, and incentive structures like eco-modulated fees that financially reward producers who 

utilize AI to promote circularity, such as developing AI-optimized DfR. A cornerstone of this policy must be the mandatory 

adoption of advanced labelling strategies, including Digital Product Identification or digital product passports, to ensure textile 

traceability and provide comprehensive data. Policies that encourage data sharing to enable efficient downstream applications 

while protecting intellectual property could accelerate the development of comprehensive datasets needed for robust AI models. 

Implementation frameworks should address the specific needs of different stakeholders across the textile value chain. 

Specifically, governments must advocate for public procurement policies that prioritize textiles verified by AI-driven 

sustainability and circularity metrics. This approach creates a guaranteed market for early adopters of AI technologies, helping 

to mitigate the high costs and uncertainties regarding Return on Investment (ROI) that often deter implementation, especially for 

SMEs. This Green purchasing policy can require public agencies to procure environmentally preferable products. For 
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manufacturers, guidelines for phased AI adoption that minimise disruption and maximise return on investment would facilitate 

broader implementation. For recycling facilities and second-hand markets, standards for AI-based quality and condition 

assessment could create more transparent and efficient markets for used textiles. Educational institutions have a role to play in 

developing curricula that bridge textile science with data analytics and AI competencies, preparing the next generation of 

professionals for the evolving industry landscape. 

Table 3 synthesizes the major challenges, necessary future research directions, policy frameworks, and underlying context for 

the sustainable integration of AI in the textile sector. 

Table 3: Challenges and Future Directions for AI in Textile Sustainability 

Challenge 

Category 
Specific Challenges Future Research Directions 

Implementation 

Considerations 
Ref. 

Technical 

Limitations 

 

Data scarcity (limited 

size/scope); Model 

interpretability ("black-

box" nature of DL); 

Generalization. 

Development of PINNs to 

enhance robustness and 

generalization; Combining XAI 

techniques with Causality 

Analysis for transparent, white-

box models; Synthetic data 

generation. 

Collaborative 

development of large, 

diverse, open-source 

datasets (following FAIR 

principles); Model 

benchmarking standards. 

[7,102,104] 

System 

Integration & 

Implementation 

 

High initial 

implementation costs; 

Compatibility issues 

with legacy equipment 

(low digital maturity). 

Development of modular AI 

systems and retrofit solutions for 

older machinery; Increased 

adoption of cloud-based 

platforms (AI-as-a-Service, 

AIaaS). 

Phased implementation 

guides to minimise 

disruption. 

[102,103] 

Circular 

Economy 

Applications 

 

Recycling complexity 

of smart textiles 

(hybrid materials); 

Need for standardized 

material composition 

data. 

AI-driven DfD; Generative AI 

tools to suggest designs 

minimizing waste and enhancing 

recyclability; Development of 

mono-material textiles. 

Mandatory adoption of 

DPPs for traceability; 

Recycling compatibility 

labelling standards. 

[96,113] 

Economic 

Viability & 

Access 

 

High initial investment 

is prohibitive for 

SMEs; Risk of 

innovation being 

concentrated in large 

corporations. 

Targeted financial incentives (tax 

breaks, grants) for SME 

adoption; Establishing regional 

innovation hubs (e.g., AFFOA) 

Eco-modulated fees that 

financially reward 

producers using AI for 

circularity; Public 

procurement policies 

prioritizing AI-verified 

sustainable textiles. 

[107–109] 

Social 

Implications 

 

Potential workforce 

displacement from 

automation; Skills gap. 

Research into Human-AI 

collaboration systems; 

Development of adaptive 

learning platforms. 

Investment in workforce 

transition and skills 

development programs; 

Development of curricula 

bridging textile science 

and data analytics. 

[107,110] 

Environmental 

Implications 

Environmental 

footprint of AI (energy 

consumption of data 

centres). 

Focus on energy-efficient 

algorithms. 

Sustainable 

infrastructure. 
[103] 
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5 CONCLUSION 

This review substantiates the considerable potential of Artificial Intelligence and Machine Learning to advance sustainability in 

the textile industry through a circular economy lens. AI-driven approaches facilitate unprecedented efficiencies, waste reduction, 

and resource conservation across the value chain, from predictive material design and manufacturing optimisation to waste 

management and recycling. Key applications, including predictive modelling of material properties, computer vision for quality 

control and defect detection, and automated sorting for textile waste, are pivotal in building closed-loop systems that maximise 

resource value and minimise environmental impact. Innovations such as AI-driven Design for Disassembly (DfD) and robotic 

garment dismantling further underscore this potential. 

A central finding of this review, however, is that whilst core AI methodologies demonstrate significant algorithmic efficacy, 

their realised impact on textile circularity is primarily constrained by systemic, non-algorithmic barriers. Realising AI's full 

potential necessitates addressing persistent challenges related to data availability—often rooted in commercial reluctance to share 

proprietary information and the low digital maturity of many textile operations. Moreover, high initial implementation costs and 

compatibility issues with legacy systems present significant economic and technical hurdles, which risk marginalising small and 

medium-sized enterprises (SMEs). 

Consequently, future research should prioritise: (i) the development of more robust, physics-informed models to enhance 

generalisation with limited data; (ii) the collaborative creation of comprehensive, standardised, and diverse datasets; and (iii) 

enhancing the explainability and accessibility of AI tools to foster broader industry adoption. The successful transition of the 

textile industry towards circularity will depend not only on these technological advancements but also on supportive policy 

frameworks and the alignment of economic incentives with sustainability objectives. 

As AI technologies mature, their deeper integration with textile science and engineering promises to unlock new frontiers for 

sustainable innovation. Harnessing AI for circular economy applications offers a pathway towards a more regenerative and 

efficient industrial model, balancing economic growth with environmental stewardship and social responsibility. This 

transformation represents not merely a technological imperative but an essential commitment to achieving global sustainability 

goals within an industry integral to modern society. 
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