Processing and Characterization of Conductive Polyether Ether Ketone/Carbon Nanotube Monofilaments and Core–Sheath Filaments

Authors

  • Toty Onggar Technical University Dresden Author
  • Leopold Alexander Frankenbach Technical University Dresden Author
  • Chokri Cherif Technical University Dresden Author

Keywords:

Poly ether ether ketone, carbon nano tubes, sensor yarn, electrical conductivity, mechanical properties, thermoplastic composite

Abstract

The increasing demand for lightweight, high-performance materials has driven the development of textile-reinforced composites with integrated sensing capabilities. While thermoset-based composites have established sensor integration strategies, thermoplastic composites face challenges due to high processing temperatures. This study presents a novel approach to produce high-temperature-resistant, electrically conductive polyether ether ketone with multi-walled carbon nanotubes (PEEK/MWCNT) monofilament and core-sheath (PEEK-MWCNT/PEEK) filament yarns suitable for textile processing and structural health monitoring. Filaments were produced using a twin-screw extrusion site and a bicomponent melt spinning plant, systematically varying MWCNT content (1.0–7.0 wt.%) and process parameters. Differential scanning calorimetry revealed that MWCNTs influence PEEK crystallinity, glass transition temperature, and thermal transitions, while scanning electron microscopy (SEM) images confirmed filler dispersion and morphology. Mechanical testing demonstrated increased stiffness and tensile strength with higher MWCNT loading, while elongation at break decreased. Integration of conductive filaments into glass fiber/polypropylene (GF/PP) composites maintained or slightly improved composite mechanical properties. Electrical contacting via crimping combined with conductive epoxy provided stable, low-resistance connections. The results demonstrate that PEEK/MWCNT sensor yarns are suitable for high-temperature, textile-reinforced thermoplastic composites, offering a robust platform for intrinsically conductive, processable, and mechanically stable structural health monitoring systems.

References

1.Zuo P, Srinivasan DV, Vassilopoulos AP. Review of hybrid composites fatigue. Composite Structures 2021; 274: 114358.

2.Tatar J, Milev S. Durability of Externally Bonded Fiber-Reinforced Polymer Composites in Concrete Structures: A Critical Review. Polymers (Basel) 2021; 13(5): 2–24.

3.Li Y, Chen X, Zhou J, Liu X, Di Zhang, Du F et al. A review of high‐velocity impact on fiber‐reinforced textile composites: Potential for aero engine applications. Int Journal of Mech Sys Dyn 2022; 2(1): 50–64.

4.Gebrehiwet L, Abate E, Negussie Y, Abeselom E. Application Of Composite Materials In Aerospace & Automotive Industry:Review. International Journal of Advances in Engineering and Management (IJAEM) 2023; 2023(Volume 5, Issue 3):697–723. Available from: URL: file:///d:/user_redir/onggar/Downloads/LijCompositeapplicationarticle.pdf.

5.Saravanan M, Kumar DB. A review on navy ship parts by advanced composite material. Materials Today: Proceedings 2021; 45: 6072–7.

6.Mieloszyk M, Majewska K, Ostachowicz W. Application of embedded fibre Bragg grating sensors for structural health monitoring of complex composite structures for marine applications. Marine Structures 2021; 76: 102903.

7.Baley C, Davies P, Troalen W, Chamley A, Dinham-Price I, Marchandise A et al. Sustainable polymer composite marine structures: Developments and challenges. Progress in Materials Science 2024; 145: 101307.

8.Olhan S, Khatkar V, Behera BK. Review: Textile-based natural fibre-reinforced polymeric composites in automotive lightweighting. J Mater Sci 2021; 56(34): 18867–910.

9.Lakra R, Kumar R, Sahoo PK, Thatoi D, Soam A. A mini-review: Graphene based composites for supercapacitor application. Inorganic Chemistry Communications 2021; 133: 108929.

10.Mishnaevsky L. Sustainable End-of-Life Management of Wind Turbine Blades: Overview of Current and Coming Solutions. Materials (Basel) 2021; 14(5): 1124.

11.Bairagi S, Shahid-ul-Islam, Shahadat M, Mulvihill DM, Ali W. Mechanical energy harvesting and self-powered electronic applications of textile-based piezoelectric nanogenerators: A systematic review. Nano Energy 2023; 111: 108414.

12.Yang CQ, Wang XL, Jiao YJ, Ding YL, Zhang YF, Wu ZS. Linear strain sensing performance of continuous high strength carbon fibre reinforced polymer composites. Composites Part B: Engineering 2016; 102: 86–93.

13.Chen AY, Baehr S, Turner A, Zhang Z, Gu GX. Carbon-fiber reinforced polymer composites: A comparison of manufacturing methods on mechanical properties. International Journal of Lightweight Materials and Manufacture 2021; 4(4): 468–79.

14.Adil S, Lazoglu I. A review on additive manufacturing of carbon fiber‐reinforced polymers: Current methods, materials, mechanical properties, applications and challenges. J of Applied Polymer Sci 2023; 140(7): 1-28.

15.Huang X. Fabrication and Properties of Carbon Fibers. Materials (Basel) 2009; 2(4): 2369–403.

16.Cherif C, editor. Textile Werkstoffe für den Leichtbau: Techniken - Verfahren - Materialien - Eigenschaften. Berlin, Heidelberg: Springer; 2011.

17.Chen Y, Hart J, Suh M, Mathur K, Yin R. Electromechanical Characterization of Commercial Conductive Yarns for E-Textiles. Textiles 2023; 3(3): 294–306.

18.Stoppa M, Chiolerio A. Wearable electronics and smart textiles: a critical review. Sensors (Basel) 2014; 14(7): 11957–92.

19.Wang P, Pan A, Xia L, Cao Y, Zhang H, Wu W. Effect of process parameters of fused deposition modeling on mechanical properties of poly-ether-ether-ketone and carbon fiber/poly-ether-ether-ketone. High Performance Polymers 2022; 34(3): 337–51.

20.Ana M. Díez-Pascual, Mohammed Naffakh, Carlos Marco, Gary Ellis, Marián A. Gómez-Fatou. Highperformance nanocomposites based on polyetherketones. Progress in Materials Science 2012 [cited 2025 Jul 9]; (57):1106–90. Available from: URL: https://www.sciencedirect.com/science/article/pii/S0079642512000266.

21.Molinar-Díaz J, Parsons AJ, Ahmed I, Warrior NA, Harper LT. Poly-Ether-Ether-Ketone (PEEK) Biomaterials and Composites: Challenges, Progress, and Opportunities. Polymer Reviews 2025; (65): 527–65.

22.DIN-Normenausschuss Kunststoffe (FNK), Plastics Standards Committee. Plastics - Methods for determining the density of non-cellular plastics - Part 3: Gas pyknometer method (ISO 1183-3:1999); German version EN ISO 1183-3:1999: BEST Collection 19; Kunststoffindustrie-2025, BEST Collection 21; DIN-Regelwerk-2025, BEST Collection 40; ISO-Exchange-2025, Handbuch Kunststoffe Band 2-2004; 2025 2025 Jun 17. Available from: URL: https://nautos.de/O9G/search/item-detail/DE45801212 [cited 2025 Jul 9].

23.DKE Deutsche Kommission Elektrotechnik Elektronik Informationstechnik in DIN und VDE, German Commission for Electrical, Electronic and Information Technologies of DIN and VDE. Dielectric and resistive properties of solid insulating materials - Part 2-3: Relative permittivity and dissipation factor - Contact electrode method for insulating films - AC methods (IEC 62631-2-3:2024); German version EN IEC 62631-2-3:2024: DIN Deutsches Institut für Normung e. V., DIN German Institute for Standardization; 2025 2025 Jun 17. Available from: URL: https://nautos.de/O9G/search/item-detail/DE30104946 [cited 2025 Jul 9].

24.D20 Committee. Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry. West Conshohocken, PA: ASTM International.

25.Silva S, Barbosa JM, Sousa JD, Paiva MC, Teixeira PF. High-Performance PEEK/MWCNT Nanocomposites: Combining Enhanced Electrical Conductivity and Nanotube Dispersion. Polymers (Basel) 2024; 16(5): 583.

26.Dydek K, Latko-Durałek P, Sulowska A, Kubiś M, Demski S, Kozera P et al. Effect of Processing Temperature and the Content of Carbon Nanotubes on the Properties of Nanocomposites Based on Polyphenylene Sulfide. Polymers (Basel) 2021; 13(21): 3816.

27.Awaja F, Zhang S. Self-bonding of PEEK for active medical implants applications. J. of Adhesion Science and Technology, 2015; 29(15): 1593-1606.

28.Gohn AM, Seo J, Colby RH, Schaake RP, Androsch R, Rhoades AM. Crystal nucleation in poly(ether ether ketone)/carbon nanotube nanocomposites at high and low supercooling of the melt; Polymer, 2020; 199; 122548.

29.Rinaldi M, Ghidini T, Nanni F. Fused filament fabrication of polyetheretherketone/multiwalled carbon nanotube nanocomposites: the effect of thermally conductive nanometric filler on the printability and related properties. Polymer International 2021; 70(8): 1080–9.

30.Kayginok F, Karabal M, Yıldız A, Cebeci H. CNT reinforced PEI and PEEK nanocomposites: A comparison on the thermal and rheological properties. Polymer Testing 2024; 137: 108519.

31.Shang Y, Wu X, Liu Y, Jiang Z, Wang Z, Jiang Z et al. Preparation of PEEK/MWCNTs composites with excellent mechanical and tribological properties. High Performance Polymers 2019; 31(1): 43–50.

32.Feng S, Liu C, Sue H-J. Preparation of PEEK/MWCNT nanocomposites via MWCNT-induced interfacial crystallization mediated compatibilization. Composites Science and Technology 2022; 221: 109298.

33.Ma R, Zhu B, Zeng Q, Wang P, Wang Y, Liu C et al. Melt-Processed Poly(Ether Ether Ketone)/Carbon Nanotubes/Montmorillonite Nanocomposites with Enhanced Mechanical and Thermomechanical Properties. Materials (Basel) 2019; 12(3): 525.

34.Shokrieh, M M, Saeedi, Ali, Chitsazzadeh, Majid. Mechanical properties of multi-walled carbon nanotube/polyester nanocomposites - Journal of Nanostructure in Chemistry 2013; 3(20): 1-5. Available from: URL: https://link.springer.com/article/10.1186/2193-8865-3-20.

35.Gonçalves J, Lima P, Krause B, Pötschke P, Lafont U, Gomes JR et al. Electrically Conductive Polyetheretherketone Nanocomposite Filaments: From Production to Fused Deposition Modeling. Polymers (Basel) 2018; 10(8): 925.

36.Zhao Q, Zhang K, Zhu S, Xu H, Cao D, Zhao L et al. Review on the Electrical Resistance/Conductivity of Carbon Fiber Reinforced Polymer. Appl. Sci. 2019; 9(11): 2390.

37.Wang X, Fu X, Chung DDL. Strain sensing using carbon fiber. J of Materiala Research. 2011; 14: 790-802.

38.Supreem Carbon. carbon-fiber-electrical-conductivity-essential-guide-for-industry; 2025 [cited 2025 Nov 4]. Available from: URL: https://www.supreemcarbon.com/article/carbon-fiber-electrical-conductivity-essentialguide-for-industry.html.

Mokhtari M, Archer E, Bloomfield N. A review of electrically conductive poly(ether ether ketone) materials. Polymer International 2021; (70): 1016–25

Downloads

Published

2025-11-30

How to Cite

Onggar, T., Frankenbach, L. A., & Cherif, C. (2025). Processing and Characterization of Conductive Polyether Ether Ketone/Carbon Nanotube Monofilaments and Core–Sheath Filaments. Textile Science & Research Journal, 1(1). https://textile-journal.com/index.php/textile/article/view/127-152

Similar Articles

You may also start an advanced similarity search for this article.