Artificial Intelligence for Sustainable Textiles: A Review of Circular Economy Applications
Keywords:
Artificial Intelligence, Circular Economy, Textile Recycling, Predictive Modelling, Computer Vision, Sustainable ManufacturingAbstract
The integration of Artificial Intelligence (AI) and Machine Learning (ML) presents a paradigm shift for enhancing sustainability within the textile industry. This review examines the transformative potential of these technologies in fostering a circular economy, with a focus on material design, process optimisation, and end-of-life solutions. It surveys applications across textile science, from natural fibre composites to technical and smart textiles, highlighting the role of predictive modelling and ML algorithms—including neural networks, convolutional neural networks (CNNs), and random forests. These techniques are demonstrated to enhance the design of fibre-based materials, predict key properties such as tensile strength and thermal stability, and optimise manufacturing processes like dyeing and weaving. Furthermore, the review explores the significant contribution of computer vision to automated quality control, defect detection, and the assessment of garment condition for resale, thereby supporting circular business models. A central theme is the capacity of AI to drive sustainability by enabling zero-waste pattern design, improving colour prediction accuracy to reduce chemical waste, and advancing automated textile sorting for recycling. Despite this promising progress, the principal challenges identified are not algorithmic but systemic, relating to data scarcity, integration complexities, and the need for cross-sector collaboration. The review concludes by identifying critical future research directions, emphasising the need for robust, physics-informed models, the collaborative development of larger, more diverse datasets, and AI-driven Design for Disassembly (DfD) to fully realise AI's potential in creating a more innovative, efficient, and sustainable textile industry.
Keywords: Artificial Intelligence; Circular Economy; Textile Recycling; Predictive Modelling; Computer Vision; Sustainable Manufacturing
References
1.Precedence Research [Internet]. 2025 [cited 2025 Oct 13]. Textile Market Embraces Innovation and Sustainability for a Dynamic Future. Available from: https://www.precedenceresearch.com/textile-market
2.Fan W, Wang Y, Liu R, Zou J, Yu X, Liu Y, et al. Textile production by additive manufacturing and textile waste recycling: a review. Environ Chem Lett. 2024 Aug 5;22(4):1929–87. Doi: 10.1007/s10311-024-01726-2.
3.Das AK, Hossain MdF, Khan BU, Rahman MdM, Asad MAZ, Akter M. Circular economy: A sustainable model for waste reduction and wealth creation in the textile supply chain. SPE Polymers. 2025 Jan 9;6(1). Doi: 10.1002/pls2.10171.
4.Sajdeh R, Martinez-Pardo C, Meyer zum Felde A, Lange T, Tieri E, Evans E. BCG. 2025 [cited 2025 Oct 26]. Spinning Textile Waste into Value | BCG. Available from: https://www.bcg.com/publications/2025/spinning-textile-waste-into-value
5.Iseal S. Circular Economy Models Enhanced by AI in the Fashion Industry: A Path Toward Sustainable Transformation. 2025 Jan;
6.Dissanayake DGK, Weerasinghe D. Towards Circular Economy in Fashion: Review of Strategies, Barriers and Enablers. Circular Economy and Sustainability. 2022 Mar 16;2(1):25–45. Doi: 10.1007/s43615-021-00090-5.
7.Nisa H, Van Amber R, English J, Islam S, McCorkill G, Alavi A. A Systematic Review of Reimagining Fashion and Textiles Sustainability with AI: A Circular Economy Approach. Applied Sciences. 2025 May 20;15(10):5691. Doi: 10.3390/app15105691.
8.Bai J, Wu D, Shelley T, Schubel P, Twine D, Russell J, et al. A Comprehensive Survey on Machine Learning Driven Material Defect Detection. 2025 May 2; Available from: http://arxiv.org/abs/2406.07880
9.Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev. 2021 Dec 29;10(1):89. Doi: 10.1186/s13643-021-01626-4.
10.Tu YF, Kwan MY, Yick KL. A Systematic Review of AI-Driven Prediction of Fabric Properties and Handfeel. Materials. 2024 Oct 13;17(20):5009. Doi: 10.3390/ma17205009.
11.Ganesh SS, Tewari S, Panda AP. Future of textiles woven with intelligence, reality and innovation.
12.Kumar B. AI-Powered Smart Textiles: Integrating Machine Learning in Wearable Technologies. International Journal of Scientific Research and Engineering Development [Internet]. 8. Available from: www.ijsred.com
13.Rahman R, Sourob H. Advancements in Textile AI: Innovations, Applications, and Future Directions.
14.Malashin I, Martysyuk D, Tynchenko V, Gantimurov A, Nelyub V, Borodulin A, et al. Machine Learning in Polymeric Technical Textiles: A Review. Polymers (Basel). 2025 Apr 25;17(9):1172. Doi: 10.3390/polym17091172.
15.Uddin MdH, Mulla MH, Abedin T, Manap A, Yap BK, Rajamony RK, et al. Advances in natural fiber polymer and PLA composites through artificial intelligence and machine learning integration. Journal of Polymer Research. 2025 Mar 24;32(3):76. Doi: 10.1007/s10965-025-04282-7.
16.Karuppusamy M, Thirumalaisamy R, Palanisamy S, Nagamalai S, El Sayed Massoud E, Ayrilmis N. A review of machine learning applications in polymer composites: advancements, challenges, and future prospects. J Mater Chem A Mater. 2025;13(22):16290–308. Doi: 10.1039/D5TA00982K.
17.Le TT. Prediction of tensile strength of polymer carbon nanotube composites using practical machine learning method. J Compos Mater. 2021 Mar 17;55(6):787–811. Doi: 10.1177/0021998320953540.
18.Bao Q, Zhang Z, Luo H, Tao X. Evaluating and Modeling the Degradation of PLA/PHB Fabrics in Marine Water. Polymers (Basel). 2022 Dec 25;15(1):82. Doi: 10.3390/polym15010082.
19.Lin C, Zhang H. Polymer Biodegradation in Aquatic Environments: A Machine Learning Model Informed by Meta-Analysis of Structure-Biodegradation Relationships. Environ Sci Technol. 2025 Jan 21;59(2):1253–63. Doi: 10.1021/acs.est.4c11282.
20.Munir N, McMorrow R, Mulrennan K, Whitaker D, McLoone S, Kellomäki M, et al. Interpretable Machine Learning Methods for Monitoring Polymer Degradation in Extrusion of Polylactic Acid. Polymers (Basel). 2023 Aug 28;15(17):3566. Doi: 10.3390/polym15173566.
21.Wang J, Karimi S, Zeinalzad P, Zhang J, Gong Z. Using machine learning and experimental study to correlate and predict accelerated aging with natural aging of GFRP composites in hygrothermal conditions. Constr Build Mater. 2024 Aug;438:137264. Doi: 10.1016/j.conbuildmat.2024.137264.
22.Allish S, Suthiksha. P, K M Pachiappan, R. Divya Sathiyam, Saniya A. A review on recent trends in smart textiles. World Journal of Advanced Research and Reviews. 2024 Oct 30;24(1):1824–8. Doi: 10.30574/wjarr.2024.24.1.3103.
23.Sarker MTH, Ahmed I, Rahaman MA. AI-BASED SMART TEXTILE WEARABLES FOR REMOTE HEALTH SURVEILLANCE AND CRITICAL EMERGENCY ALERTS: A SYSTEMATIC LITERATURE REVIEW. American Journal of Scholarly Research and Innovation. 2023 Sep 2;2(02):01–29. Doi: 10.63125/ceqapd08.
24.Huang G, Chen X, Liao C. AI-Driven Wearable Bioelectronics in Digital Healthcare. Biosensors (Basel). 2025 Jun 26;15(7):410. Doi: 10.3390/bios15070410.
25.Dias ITPC, Borges ID de S, Valente EL. Artificial intelligence and the future of smart fabrics. CONTRIBUCIONES A LAS CIENCIAS SOCIALES. 2025 Feb 19;18(2):e15665. Doi: 10.55905/revconv.18n.2-302.
26.Jubair H, Mehenaz M. Bioengineered Smart Textiles: An Analysis of Self-Healing and Adaptive Performance in Sustainable Fabric Technologies. 2025. Doi: 10.22541/au.174231276.67061869/v1.
27.Akter A, Apu MMH, Veeranki YR, Baroud TN, Posada-Quintero HF. Recent Studies on Smart Textile-Based Wearable Sweat Sensors for Medical Monitoring: A Systematic Review. Journal of Sensor and Actuator Networks. 2024 Jul 11;13(4):40. Doi: 10.3390/jsan13040040.
28.Xu Z, Zhang C, Wang F, Yu J, Yang G, Surmenev RA, et al. Smart Textiles for Personalized Sports and Healthcare. Nanomicro Lett. 2025 Dec 25;17(1):232. Doi: 10.1007/s40820-025-01749-6.
29.Iannacchero M, Löfgren J, Mohan M, Rinke P, Vapaavuori J. Machine learning-assisted development of polypyrrole-grafted yarns for e-textiles. Mater Des. 2025 Jan;249:113528. Doi: 10.1016/j.matdes.2024.113528.
30.Hao L, Dong C, Yu D. Polypyrrole Derivatives: Preparation, Properties and Application. Polymers (Basel). 2024 Aug 6;16(16):2233. Doi: 10.3390/polym16162233.
31.Liang Y, Goh JCH. Polypyrrole-Incorporated Conducting Constructs for Tissue Engineering Applications: A Review. Bioelectricity. 2020 Jun 1;2(2):101–19. Doi: 10.1089/bioe.2020.0010.
32.Borges MHR, Nagay BE, Costa RC, Souza JGS, Mathew MT, Barão VAR. Recent advances of polypyrrole conducting polymer film for biomedical application: Toward a viable platform for cell-microbial interactions. Adv Colloid Interface Sci. 2023 Apr;314:102860. Doi: 10.1016/j.cis.2023.102860.
33.Bengalli R, Fiandra L, Vineis C, Sanchez-Ramirez DO, Azoia NG, Varesano A, et al. Safety Assessment of Polypyrrole Nanoparticles and Spray-Coated Textiles. Nanomaterials. 2021 Aug 3;11(8):1991. Doi: 10.3390/nano11081991.
34.Myant Corporation [Internet]. [cited 2025 Oct 26]. Pioneering the Future of Connected Well-being. Available from: https://myant.ca/
35.Chronolife [Internet]. 2022 [cited 2025 Oct 26]. Chronolife announces collaboration with Garmin to further enrich continuous remote patient monitoring in real-life conditions. Available from: https://chronolife.net/chronolife-garmin-remote-patient-monitoring/
36.Sensoria [Internet]. [cited 2025 Oct 26]. The Sensoria Textile Pressure Sensors Technology. Available from: https://www.sensoriafitness.com/technology
37.Seçkin M, Seçkin AÇ, Demircioglu P, Bogrekci I. FabricNET: A Microscopic Image Dataset of Woven Fabrics for Predicting Texture and Weaving Parameters through Machine Learning. Sustainability. 2023 Oct 24;15(21):15197. Doi: 10.3390/su152115197.
38.Petrak S, Mahnić Naglić M, Glogar M, Tomljenović A. Assessment of Textile Material Properties and the Impact of Digital Ink-Jet Fabric Printing on 3D Simulation as a Sustainable Method for Garment Prototyping. Sustainability. 2025 Feb 8;17(4):1388. Doi: 10.3390/su17041388.
39.Kuzmichev V. Clothing Design in the Era of Artificial Intelligence. Journal of Computer and Communications. 2025;13(05):121–36. Doi: 10.4236/jcc.2025.135008.
40.Rasouli M, Chen Y, Basu A, Kukreja SL, Thakor N V. An Extreme Learning Machine-Based Neuromorphic Tactile Sensing System for Texture Recognition. IEEE Trans Biomed Circuits Syst. 2018 Apr;12(2):313–25. Doi: 10.1109/TBCAS.2018.2805721.
41.Gültekin E, Çelik Hİ, Nohut S, Elma SK. Predicting air permeability and porosity of nonwovens with image processing and artificial intelligence methods. The Journal of The Textile Institute. 2020 Nov 1;111(11):1641–51. Doi: 10.1080/00405000.2020.1727267.
42.Lee S, Han Y, Yun C. Development of a fabric classification system using drapability and tactile characteristics. Fashion and Textiles. 2024 Jan 22;11(1):2. Doi: 10.1186/s40691-023-00368-2.
43.Malashin I, Tynchenko V, Gantimurov A, Nelyub V, Borodulin A. A Multi-Objective Optimization of Neural Networks for Predicting the Physical Properties of Textile Polymer Composite Materials. Polymers (Basel). 2024 Jun 20;16(12):1752. Doi: 10.3390/polym16121752.
44.Tadesse MG, Chen Y, Wang L, Nierstrasz V, Loghin C. Tactile Comfort Prediction of Functional Fabrics from Instrumental Data Using Intelligence Systems. Fibers and Polymers. 2019 Jan 15;20(1):199–209. Doi: 10.1007/s12221-019-8301-9.
45.Habib A, Ullah A, Maha MM. Advancing sustainable fashion through 3D virtual design for reduced environmental impact. J Textile Eng Fashion Technol. 2025;11(3):135–42.
46.Thandayuthapani S, Thirumoorthi P. Enhancing consumer engagement through augmented reality: AR’s role in personalized shopping experiences, virtual product interaction, and sustainability. In: Sustainable Practices in the Fashion and Retail Industry. IGI Global; 2025. p. 255–73. Doi: 10.4018/979-8-3693-9959-0.ch011.
47.Patnaik A. Exploring The Evolution Of Virtual Try-On Technologies: A Comprehensive Review From A User-Centric Perspective. Educational Administration: Theory and Practice. 2024 Apr 30;8271–87. Doi: 10.53555/kuey.v30i4.2723.
48.Kong D, Seock YK, Marschner S, Park HT. Leveraging 4D Golf Apparel Wear Simulation in Online Shopping: A Promising Approach to Minimizing the Carbon Footprint. Sustainability (Switzerland). 2023 Jul 1;15(14). Doi: 10.3390/su151411444.
49.Gao Y, Liang J. The Impact of AI-Powered Try-On Technology on Online Consumers’ Impulsive Buying Intention: The Moderating Role of Brand Trust. Sustainability (Switzerland). 2025 Apr 1;17(7). Doi: 10.3390/su17072789.
50.Hwangbo H, Kim EH, Lee SH, Jang YJ. Effects of 3D Virtual “Try-On” on Online Sales and Customers’ Purchasing Experiences. IEEE Access. 2020;8:189479–89. Doi: 10.1109/ACCESS.2020.3023040.
51.3DLOOK [Internet]. 2024 [cited 2025 Oct 13]. How 1822 Denim reduced returns by 30% - 3DLOOK. Available from: https://3dlook.ai/content-hub/case-study-how-1822-denim-reduced-returns-by-30/?utm_source=linkedin&utm_medium=company_page&utm_campaign=1822_case_study
52.3DLOOK [Internet]. 2024 [cited 2025 Oct 13]. How TA3 SWIM boosts fit confidence with YourFit - 3DLOOK. Available from: https://3dlook.ai/content-hub/case-study-ta3-swim/
53.Textile School [Internet]. 2025 [cited 2025 Oct 16]. Predictive Maintenance in Textile Machinery: Advancements for Sustainable Manufacturing - Textile School. Available from: https://www.textileschool.com/29809/predictive-maintenance-in-textile-machinery-advancements-for-sustainable-manufacturing/
54.Abirami Vina. Ultralytics. 2024 [cited 2025 Oct 16]. The future of textile production with AI-driven manufacturing. Available from: https://www.ultralytics.com/blog/the-future-of-textile-production-with-ai-driven-manufacturing
55.Textile Focus [Internet]. 2024 [cited 2025 Oct 16]. The Role of AI and Automation in Textile Manufacturing. Available from: https://textilefocus.com/the-role-of-ai-and-automation-in-textile-manufacturing/
56.Azevedo J, Ribeiro R, Matos LM, Sousa R, Silva JP, Pilastri A, et al. Predicting Yarn Breaks in Textile Fabrics: A Machine Learning Approach. Procedia Comput Sci. 2022;207:2301–10. Doi: 10.1016/j.procs.2022.09.289.
57.IMEC [Internet]. 2025 [cited 2025 Oct 16]. From Downtime to Uptime: Using AI for Predictive Maintenance in Manufacturing - IMEC Site. Available from: https://www.imec.org/from-downtime-to-uptime-using-ai-for-predictive-maintenance-in-manufacturing/
58.Pratishtha Yadav. SenseGrow. 2024 [cited 2025 Oct 16]. Textile Industry Case Study for AI Driven Predictive Maintenance - SenseGrow. Available from: https://www.sensegrow.com/blog/customer-stories/textile-industry-case-study-for-ai-driven-predictive-maintenance
59.Mutually Human [Internet]. 2025 [cited 2025 Oct 16]. Predictive Maintenance with Microsoft Fabric: A Manufacturing Case Study | Mutually Human. Available from: https://www.mutuallyhuman.com/predictive-maintenance-with-microsoft-fabric-a-manufacturing-case-study/
60.AI-Driven Textile Dyeing: Efficiency And Sustainability [Internet]. [cited 2025 Oct 16]. Available from: https://www.globaltextiletimes.com/trends/ai-driven-textile-dyeing-efficiency-and-sustainability/
61.Souissi M, Chaouch S, Moussa A, Dhaouadi H. Dyeing of advanced denim fabrics (blend of cotton/bicomponent polyester filaments) using different processes and artificial intelligence method. Sci Rep. 2024 Jan 23;14(1):1952. Doi: 10.1038/s41598-024-52189-y.
62.Hassan SA, Beliatis MJ, Radziwon A, Menciassi A, Oddo CM. Textile Fabric Defect Detection Using Enhanced Deep Convolutional Neural Network with Safe Human–Robot Collaborative Interaction. Electronics (Basel). 2024 Nov 2;13(21):4314. Doi: 10.3390/electronics13214314.
63.Carrilho R, Yaghoubi E, Lindo J, Hambarde K, Proença H. Toward Automated Fabric Defect Detection: A Survey of Recent Computer Vision Approaches. Electronics (Basel). 2024 Sep 20;13(18):3728. Doi: 10.3390/electronics13183728.
64.WiseEye: AI-based Textile Material Inspection System | Knowledge Transfer and Entrepreneurship Office [Internet]. [cited 2025 Oct 16]. Available from: https://www.polyu.edu.hk/kteo/knowledge-transfer/innovations-and-technologies/technology-search/5-textile-and-fashion/5_itc_39_0319/?sc_lang=en
65.Advantech [Internet]. 2022 [cited 2025 Oct 16]. Textile Manufacturer Utilizes Advantech’s WISE. Available from: https://www.advantech.com/en-us/resources/case-study/textile-manufacturer-utilizes-advantech%E2%80%99s-wise-paas-cloud-platform-to-implement-intelligent-textile-production
66.Wong Wai Keung Calvin, Lyu Shuai, Liao Jinpiao, Chen Zhewei, Zhang Rongchen, Zhong Zuofeng. WiseEye: A standalone AI based defect detection, classification and grading system for textiles - Academic research poster [Internet]. [cited 2025 Oct 16]. Available from: https://catalog-admin.palexpo.ch/media/invention_invention_poster/b3b2fc96-52a6-4782-8c70-6c35ff0dc8a9.pdf
67.Sun Q, Noche B, Xie Z, Huang B. Research on Seamless Fabric Defect Detection Based on Improved YOLOv8n. Applied Sciences. 2025 Mar 4;15(5):2728. Doi: 10.3390/app15052728.
68.Yang X. Research on real-time detection of fabric defects based on an improved Elo rating algorithm. Sci Rep. 2025 Sep 1;15(1):32065. Doi: 10.1038/s41598-025-17747-y.
69.Almeida T, Moutinho F, Matos-Carvalho JP. Fabric Defect Detection With Deep Learning and False Negative Reduction. IEEE Access. 2021;9:81936–45. Doi: 10.1109/ACCESS.2021.3086028.
70.Textile Technology [Internet]. 2023 [cited 2025 Oct 16]. ISRA Vision: Inline inspection system for BCNonwovens. Available from: https://technical-textiles.textiletechnology.net/news/news/isra-vision-new-inline-inspection-system-for-bcnonwovens-34983
71.Ozek A, Seckin M, Demircioglu P, Bogrekci I. Artificial Intelligence Driving Innovation in Textile Defect Detection. Textiles. 2025 Apr 4;5(2):12. Doi: 10.3390/textiles5020012.
72.Yashika. Robro Systems. 2025 [cited 2025 Oct 16]. AI-Driven Defect Detection Systems: Reducing Waste and Enhancing Sustainability | Robro Systems. Available from: https://www.robrosystems.com/blogs/post/ai-driven-defect-detection-systems-reducing-waste-and-enhancing-sustainability
73.Yashika. Robro Systems. 2024 [cited 2025 Oct 16]. AI and Machine Vision: Reducing Waste in the Textile Industry Through Precise Defect Detection | Robro Systems. Available from: https://www.robrosystems.com/blogs/post/ai-and-machine-vision-reducing-waste-in-the-textile-industry-through-precise-defect-detection
74.Yashika. Robro Systems. 2024 [cited 2025 Oct 16]. Why Robro Systems is a Game Changer in Technical Textile Inspection | Robro Systems. Available from: https://www.robrosystems.com/blogs/post/why-robro-systems-is-a-game-changer-in-technical-textile-inspection
75.SME | Sustainable Manufacturing Expo [Internet]. [cited 2025 Oct 16]. Enhancing Quality Assurance with Machine Vision in Sustainable Manufacturing. Available from: https://www.sustainablemanufacturingexpo.com/en/articles/quality-assurance-machine-vision.html
76.Clement M. AI-Driven Predictive Analytics for Supply Chain Optimization in Textile Manufacturing. 2025 Mar;
77.Narne H. Artificial Intelligence - Enabled Demand and Supply Planning: Revolutionizing Forecasting and Optimization in Supply Chains. International Journal of Science and Research (IJSR). 2021 Jul 5;10(7):1556–60. Doi: 10.21275/SR21078105302.
78.Majumdar P. Architecting an Integrated AI Platform for the Apparel Industry. American Journal of Information Science and Technology. 2025 Sep 13;9(3):194–210. Doi: 10.11648/j.ajist.20250903.14.
79.DigitalDefynd [Internet]. 2025 [cited 2025 Oct 20]. 7 Ways Zara is Using AI [Case Study][2025]. Available from: https://digitaldefynd.com/IQ/ways-zara-using-ai/
80.Nul Global Technologies [Internet]. 2025 [cited 2025 Oct 20]. A Complete Guide to AI-Powered Fashion Demand Forecasting. Available from: https://stylematrix.io/why-ai-demand-forecasting-is-revolutionising-eofy-fashion-inventory-planning/
81.Glance [Internet]. 2025 [cited 2025 Oct 20]. AI Fashion in USA: The Intersection of Style, Data, and Digital Design. Available from: https://glance.com/us/blogs/glanceai/ai-shopping/ai-fashion-in-usa-the-intersection-of-style-data-and-digital-design
82.Amazinum [Internet]. [cited 2025 Oct 20]. The Green Thread: AI’s Influence on Sustainable Textile Solutions. Available from: https://amazinum.com/insights/the-green-thread-ais-influence-on-sustainable-textile-solutions/
83.AI in Fashion [10 Success Stories] [2025] - DigitalDefynd [Internet]. [cited 2025 Oct 20]. Available from: https://digitaldefynd.com/IQ/ai-in-fashion-success-stories/
84.Kathirvel M., Chandrasekaran M. Predictive Maintenance and Energy Optimization with AI-Driven IoT Framework in Textile Manufacturing Industry. International Journal of Computational and Experimental Science and Engineering. 2025 Apr 19;11(2). Doi: 10.22399/ijcesen.1584.
85.de Carvalho PT, Lopes JD, Raimundo RJ. Innovation Impact in the Textile Industry: From the Toyota Production System to Artificial Intelligence. Sustainability. 2025 Jan 31;17(3):1170. Doi: 10.3390/su17031170.
86.Yılmaz K, Aksu İÖ, Göçken M, Demirdelen T. Sustainable Textile Manufacturing with Revolutionizing Textile Dyeing: Deep Learning-Based, for Energy Efficiency and Environmental-Impact Reduction, Pioneering Green Practices for a Sustainable Future. Sustainability. 2024 Sep 18;16(18):8152. Doi: 10.3390/su16188152.
87.Raman R, Das P, Aggarwal R, Buch R, Palanisamy B, Basant T, et al. Circular Economy Transitions in Textile, Apparel, and Fashion: AI-Based Topic Modeling and Sustainable Development Goals Mapping. Sustainability. 2025 Jun 10;17(12):5342. Doi: 10.3390/su17125342.
88.Spyridis Y, Argyriou V, Sarigiannidis A, Radoglou Grammatikis P, Sarigiannidis P. Autonomous AI-enabled Industrial Sorting Pipeline for Advanced Textile Recycling. 2024 20th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT). 2024 May 17;455–61. Doi: https://doi.org/10.48550/arXiv.2405.10696.
89.Faghih E, Saki Z, Moore M. A Systematic Literature Review—AI-Enabled Textile Waste Sorting. Sustainability. 2025 May 8;17(10):4264. Doi: 10.3390/su17104264.
90.Riba JR, Cantero R, Riba-Mosoll P, Puig R. Post-Consumer Textile Waste Classification through Near-Infrared Spectroscopy, Using an Advanced Deep Learning Approach. Polymers (Basel). 2022 Jun 17;14(12):2475. Doi: 10.3390/polym14122475.
91.fashionsort.ai [Internet]. 2024 [cited 2025 Oct 22]. FASHIONSORT.AI. Available from: https://fashionsort.ai/
92.Ruben H. Fashion Dive. 2024 [cited 2025 Oct 22]. Vestiaire Collective launches AI search tools, names new CTO | Fashion Dive. Available from: https://www.fashiondive.com/news/vestiaire-collective-tech-hires/729400/
93.TrusTrace [Internet]. 2025 [cited 2025 Oct 22]. TrusTrace Recognized as a Representative Provider for Digital Product Passports in Gartner® Research. Available from: https://trustrace.com/newsroom/trustrace-recognized-as-a-representative-provider-for-digital-product-passports-in-gartner-research
94.Jučienė A, Gurauskienė I, Kruopienė J. Calculating the Environmental Impact Reduction Due to Extended Lifespan of Clothing Through Clothing Swaps. Sustainability. 2025 May 13;17(10):4411. Doi: 10.3390/su17104411.
95.Tadesse MG, Abate MT, Felix Lübben J, Rauch M. Recycling and Sustainable Design for Smart Textiles − A Review. Adv Sustain Syst. 2025 Aug 21;9(8). Doi: 10.1002/adsu.202401072.
96.Skrzetuska E, Rzeźniczak P. Circularity of Smart Products and Textiles Containing Flexible Electronics: Challenges, Opportunities, and Future Directions. Sensors. 2025 Mar 13;25(6):1787. Doi: 10.3390/s25061787.
97.Automated Electronics Disassembly [Internet]. [cited 2025 Oct 22]. Available from: https://www.fraunhofer.de/en/press/research-news/2025/february-2025/automated-electronics-disassembly.html
98.Bigger E. Generative Garment Design for Circularity: Parametric Patterns and Transformative Algorithms for Enabling Circular Fashion Design. In: Sustainable Innovation 2021: Accelerating Sustainability in Fashion, Clothing, Sportswear & Accessories. 2021.
99.Zhu S, Liu X. The Ecodesign Transformation of Smart Clothing: Towards a Systemic and Coupled Social–Ecological–Technological System Perspective. Sustainability. 2025 Feb 28;17(5):2102. Doi: 10.3390/su17052102.
100.Smith N. Rochester Institute of Technology. 2025 [cited 2025 Oct 23]. New RIT technologies help minimize global textile waste | RIT. Available from: https://www.rit.edu/news/new-rit-technologies-help-minimize-global-textile-waste
101.Enterprise Europe Network [Internet]. [cited 2025 Oct 23]. French R&D centre offers AI-based sorting and dismantling technologies for textile and footwear recycling under Commercial agreement with technical assistance. Available from: https://een.ec.europa.eu/partnering-opportunities/french-rd-centre-offers-ai-based-sorting-and-dismantling-technologies
102.Niinimäki Kirsi, Hernberg Hella, Bhatnagar Anubhuti, Ghoreishi Malahat. Identifying data gaps in the textile industry and assessing current initiatives to address them: study. European Parliament; 2024. 67 p.
103.Beg A, Swami C. AI’s Role in Fashion Design: Ally or Adversary in Apparel and Textile Innovation? International Journal of All Research Education & Scientific Methods. 2024 Dec;12(12).
104.Choudhary A, Vuković M, Mutlu B, Haslgrübler M, Kern R. Interpretability of Causal Discovery in Tracking Deterioration in a Highly Dynamic Process. Sensors. 2024 Jun 8;24(12):3728. Doi: 10.3390/s24123728.
105.Pereira J, Oliveira F, Guimarães M, Carneiro D, Ribeiro M, Loureiro G. Addressing the Limitations of LIME for Explainable AI in Manufacturing: A Case Study in Textile Defect Detection. In 2025. p. 262–70. Doi: 10.1007/978-3-031-86489-6_27.
106.Naranjo I, Torre R de la, Boza A. Sustainable Decision‐Making in SMEs of the Textile Industry: Integrating Methodologies, Practices, and Barriers. Bus Strategy Environ. 2025 Sep 22;34(6):6385–441. Doi: 10.1002/bse.4295.
107.Qu C, Kim E. Artificial-Intelligence-Enabled Innovation Ecosystems: A Novel Triple-Layer Framework for Micro, Small, and Medium-Sized Enterprises in the Chinese Apparel-Manufacturing Industry. Sustainability. 2025 May 30;17(11):5019. Doi: 10.3390/su17115019.
108.Toluwalase Vanessa Iyelolu, Edith Ebele Agu, Courage Idemudia, Tochukwu Ignatius Ijomah. Driving SME innovation with AI solutions: overcoming adoption barriers and future growth opportunities. International Journal of Science and Technology Research Archive. 2024 Aug 30;7(1):036–54. Doi: 10.53771/ijstra.2024.7.1.0055.
109.Busari M. AI and Machine Learning Algorithms for Predictive Supply Chain Management in Textile Manufacturing. 2025 Mar;
110.Haq UN, Khan MdMR, Khan AM, Hasanuzzaman Md, Hossain MdR. Global initiatives for industry 4.0 implementation and progress within the textile and apparel manufacturing sector: a comprehensive review. Int J Comput Integr Manuf. 2025 Jan 22;1–26. Doi: 10.1080/0951192X.2025.2455655.
111.Wilkinson MD, Dumontier M, Aalbersberg IjJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016 Mar 15;3(1):160018. Doi: 10.1038/sdata.2016.18.
112.Zhao Z. A Physics-Embedded Deep Learning Framework for Cloth Simulation. In: 2024 Asian Conference on Communication and Networks (ASIANComNet). IEEE; 2024. p. 1–7. Doi: 10.1109/ASIANComNet63184.2024.10811024.
113.Gonçalves A, Henriques E, Ribeiro I. Towards plastics circular economy: sustainability assessment of mono-material design for recycling. Procedia CIRP. 2024;122:401–6. Doi: 10.1016/j.procir.2024.01.058.